Giả sử anh T có 180 triệu đồng muốn đi gửi ngân hàng trong 18 tháng. Trong đó có hai ngân hàng A và ngân hàng B tính lãi với các phương thức như sau:
* Ngân hàng A: Lãi suất 1,2% /tháng trong 12 tháng đầu tiên và lãi suất 1,0%/tháng trong 6 tháng còn lại.
* Ngân hàng B: Mỗi tháng anh T gửi vào ngân hàng 10 triệu với lãi suất hàng tháng là 0,8%/tháng.
Hỏi rằng số tiền mà anh T sau 18 tháng được nhận (tính và vốn lẫn lãi) khi gửi ở ngân hàng A hay B được nhiều hơn và nhiều hơn bao nhiêu (đơn vị triệu đồng và làm tròn đến số thập phân thứ nhất)?
A. TB - TA = 26,2
B. TA - TB = 26,2
C. TA - TB = 24,2
D. TB - TA = 24,2
Chọn B.
Khi anh T gửi ngân hàng A:
*Trong 12 tháng đầu tiên số tiền anh T có là
T12 = a(1 + r)n = 180.(1 + 0,012) 12 = 207,7 triệu đồng
*Trong 6 tháng còn lại số tiền anh T có cả gốc lẫn lãi là
TA = 207,7( 1 + 0,01) 6 = 220,5 triệu đồng
Khi anh T gửi ngân hàng B:
*Cuối tháng thứ 18, anh T có số tiền cả gốc lẫn lãi là
*Với m = 0,8%; n = 18; a = 10 triệu đồng.
Suy ra triệu đồng
Do đó TA - TB = 26,2 triệu đồng.
Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12%/năm.Ông muốn hoàn nợ cho ngân hàng theo cách: Sau đúng 1 tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng ba tháng kể từ ngày vay. Hỏi, theo cách đó số tiền m mà ông A sẽ phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi xuất ngân hàng không thay đổi trong thời gian ông A hoàn nợ.
Tìm tất cả các giá trị thực của tham số m để bất phương trình log2( 5x - 1) .log2( 2.5x - 2) > m - 1 có nghiệm x ≥ 1?
Tìm tất cả các giá trị thực của tham số m sao cho khoảng (2 ; 3) thuộc tập nghiệm của bất phương trình log5( x2 + 1) > log5( x2 + 4x + m) - 1 (1)
Cho x, y là các số thực dương thỏa mãn và với a, b là các số nguyên dương. Tính a + b
Tập nghiệm của bất phương trình có dạng với a; b là các số nguyên dương. Khẳng định nào dưới đây là đúng về mối liên hệ giữa a; b?
Hỏi có bao nhiêu giá trị nguyên x trong đoạn [-2017; 2017] thỏa mãn bất phương trình
Cho hàm số f(x) = log2(x - 1). Tìm tập nghiệm của bất phương trình f(x + 1) > 1.
Tìm tất cả các giá trị của tham số m để hàm số xác định trên khoảng (0; +∞) .
Có tất cả bao nhiêu cặp số thực (x; y) thỏa mãn đồng thời các điều kiện và ?
Có bao nhiêu giá trị nguyên dương của m để hàm số đồng biến trên [0; 1]?
Hỏi có bao nhiêu giá trị nguyên của tham số thực m để phương trình logarit có nghiệm thuộc đoạn
Gọi S1 là tập nghiệm của bất phương trình và S2 là tập nghiệm của bất phương trình log2(x + 1) ≥ 1. Khẳng định nào dưới đây đúng ?