Cho đường tròn (O; R), đường kính AB cố định và đường kính CD thay đổi. Tiếp tuyến với đường tròn (O) tại B cắt AC tại E, AD tại F. Tìm tập hợp trực tâm các tam giác CEF và DEF.
A.Là đường tròn (O) bán kính AB
B. Là tập hợp đường tròn (O’) với (O’) làảnh của (O) qua phép tịnh tiến theo vectơ
C. Là tập hợp đường tròn (O’) với (O’) làảnh của (O) qua phép tịnh tiến theo vectơ
D. Là tập hợp đường thẳng d đi qua A và vuông góc với AB
Đáp án B
Gọi H là trực tâm tam giác CEF
Ta lại có:
3 điểm F, A, H thẳng hàng
Mà
=>
AB = HC = 2R
Gọi O’ làảnh của O qua phép tịnh tiến theo vectơ
OO’ = HC ( = 2R)
MàOO’ // HC ( cùng vuông vớiEF)
O’H = OC = R
Tập hợp H là đường tròn tâm (O’;R)
(CMTT với K là trực tâm tam giác DEF)
Cho hình ngũ giác đều có tất cả bao nhiêu trục đối xứng và tâm đối xứng
Trong Oxy, cho đường thẳng d: 2x - 3y + 1 = 0 . Tìm ảnh của đường thẳng d qua phép đối xứng tâm I( 2;1)
Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB, CD. BD lần lượt cắt CE, AF lần lượt tại K và H. Phép vị tự tâm H tỉ số k biến D thành B. Khi đó k bằng:
Cho điểm . Điểm M’ là ảnh của điểm M qua phép tịnh tiến với . Tọa độ điểm M’ là:
Cho hai điểm cố định B, C trên đường tròn (O) và một điểm A thay đổi trên đường tròn đó. Tìm quĩ tích trực tâm H của ABC:
Cho ABC ( quy ước thứ tựcácđiểm theo chiều kim đồng hồ). E là ảnh của B qua phép quay tâm A góc quay , F là ảnh của C qua phép quay tâm A góc quay . Gọi M, N, P lần lượt là trung điểm của EB, BC, CF. MNP là tam giác gì:
Trên đường tròn (O;R) cho hai điểm B, C cố định và một điểm A thay đổi. Gọi H là trực tâm của ABC và H' là điểm sao cho HBH' Clà hình bình hành. Tìm quĩ tích của điểm H.
Trong các chữ: T, O, Q, U, C,W, L, có bao nhiêu chữ có trục đối xứng:
Cho các hình sau
1: Hình tròn
2: Đường thẳng
3: Đoạn thẳng
4. Hình vuông
5. Đa giác đều n cạnh
Trong các hình trên có bao nhiêu hình có vô số trục đối xứng
Cho 2 đường tròn (O) , (O’) có cùng bán kính, tiếp xúc với nhau. Phép biến hình nào sau đây không thể biến hình này thành hình kia: