Xét tính chẵn lẻ của hàm số
A. hàm số lẻ
B. hàm số chẵn
C. không xét được tính chẵn lẻ
D. hàm số không chẵn, không lẻ
Ta có TXĐ: D = R
Dễ thấy mọi x ∈ R ta có –x ∈ R
Với mọi x > 0 ta có –x < 0 suy ra f(−x) = −1, f(x) = 1 ⇒ f(−x) = −f(x)
Với mọi x < 0 ta có –x > 0 suy ra f(−x) = 1, f(x) = −1 ⇒ f(−x) = −f(x)
Và f(−0) = −f(0) = 0
Do đó với mọi x∈R ta có f(−x) = −f(x)
Vậy hàm số là hàm số lẻ
Đáp án cần chọn là: A
Parabol (P): y = −2x2 – ax + b có điểm M (1; 3) với tung độ lớn nhất. Khi đó giá trị của b là
Nêu cách tịnh tiến đồ thị hàm số y = −2x2 để được đồ thị hàm số
y = −2x2 − 6x + 3
Cho hàm số y = mx3 − 2(m2 + 1)x2 + 2m2 − m. Tìm m để điểm M (−1; 2) thuộc đồ thị hàm số đã cho
Tìm điểm M (a; b) với a < 0 nằm trên Δ: x + y – 1 = 0 và cách N (−1; 3) một khoảng bằng 5. Giá trị của a − b là:
Cho hàm số y = mx3 − 2(m2 + 1)x2 + 2m2 − m. Tìm các điểm cố định mà đồ thị hàm số đã cho luôn đi qua với mọi m.
Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) đi qua A (2; 3) có đỉnh I (1; 2)
Tìm trên đồ thị hàm số y = −x3 + x2 + 3x − 4 hai điểm đối xứng nhau qua gốc tọa độ.
Cho hàm số bậc nhất có đồ thị là đường thẳng d. Tìm hàm số đó biết d đi qua C (3; −2) và song song với Δ: 3x − 2y + 1 = 0