Giá trị nhỏ nhất của x thỏa mãn 6x3 + x2 = 2x là
A. x = 1
B. x = 0
C. x = -1
D.
Gọi x1; x2 (x1 > x2) là hai giá trị thỏa mãn x2 + 3x – 18 = 0. Khi đó bằng
Gọi x0 < 0 là giá trị thỏa mãn x4 + 2x3 – 8x – 16 = 0. Chọn câu đúng
Ta có (x – 1)(x – 2)(x + 4)(x + 5) – 27 = (x2 + 3x + a)(x2 + 3x + b) với a, b là các số nguyên. Khi đó a + b bằng
Gọi x1; x2 là hai giá trị thỏa mãn 3x2 + 13x + 10 = 0. Khi đó 2x1.x2 bằng
Gọi x0 là giá trị thỏa mãn x4 – 4x3 + 8x2 – 16x + 16 = 0. Chọn câu đúng
Ta có (x + 2)(x + 3)(x + 4)(x + 5) – 24 = (x2 + 7x + a)(x2 + 7x + b) với a, b là các số nguyên và a < b. Khi đó a – b bằng
Cho biểu thức D = a(b2 + c2) – b(c2 + a2) + c(a2 + b2) – 2abc. Phân tích D thành nhân tử và tính giá trị của C khi a = 99; b = -9; c = 1.