IMG-LOGO

Câu hỏi:

23/07/2024 294

Phân tích đa thức x7 – x2 – 1 thành nhân tử ta được

A. (x2 – x + 1)(x5 + x4 – x3 – x2 + 1)

B. (x2 – x + 1)(x5 + x4 – x3 – x2 – 1)

Đáp án chính xác

C. (x2 + x + 1)(x5 + x4 – x3 – x2 – 1)

D. (x2 – x + 1)(x5 – x4 – x3 – x2 – 1)

Trả lời:

verified Giải bởi Vietjack

Ta có x7 – x2 – 1 = x7 – x – x2 + x – 1

= x(x6 – 1) – (x2 – x + 1)

= x(x3 – 1)(x3 + 1) – (x2 – x + 1)

= x(x3 – 1)(x + 1)(x2 – x + 1) – (x2 – x + 1)

= (x2 – x + 1)[x(x3 – 1)(x + 1) – 1]

= (x2 – x + 1)[(x2 + x)(x3 – x) – 1]

= (x2 – x + 1)(x5 + x4 – x3 – x2 – 1)

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm giá trị nhỏ nhất của biểu thức A = x2 + 2y2 – 2xy + 2x – 10y

Xem đáp án » 19/06/2021 337

Câu 2:

Gọi x1; x2 (x1 > x2) là hai giá trị thỏa mãn x2 + 3x – 18 = 0. Khi đó x1x2 bằng

Xem đáp án » 19/06/2021 331

Câu 3:

Gọi x0 < 0 là giá trị thỏa mãn x4 + 2x3 – 8x – 16 = 0. Chọn câu đúng

Xem đáp án » 19/06/2021 285

Câu 4:

Ta có (x – 1)(x – 2)(x + 4)(x + 5) – 27 = (x2 + 3x + a)(x2 + 3x + b) với a, b là các số nguyên. Khi đó a + b bằng

Xem đáp án » 19/06/2021 277

Câu 5:

Có bao nhiêu giá trị của x thỏa mãn x3 + x2 = 36 là

Xem đáp án » 19/06/2021 255

Câu 6:

Giá trị nhỏ nhất của x thỏa mãn 6x3 + x2 = 2x là

Xem đáp án » 19/06/2021 240

Câu 7:

Gọi x1; x2 là hai giá trị thỏa mãn 3x2 + 13x + 10 = 0. Khi đó 2x1.x2 bằng

Xem đáp án » 19/06/2021 227

Câu 8:

Gọi x0 là giá trị thỏa mãn x4 – 4x3 + 8x2 – 16x + 16 = 0. Chọn câu đúng

Xem đáp án » 19/06/2021 225

Câu 9:

Ta có (x + 2)(x + 3)(x + 4)(x + 5) – 24 = (x2 + 7x + a)(x2 + 7x + b) với a, b là các số nguyên và a < b. Khi đó a – b bằng

Xem đáp án » 19/06/2021 218

Câu 10:

Cho biểu thức D = a(b2 + c2) – b(c2 + a2) + c(a2 + b2) – 2abc. Phân tích D thành nhân tử và tính giá trị của C khi a = 99; b = -9; c = 1.

Xem đáp án » 19/06/2021 198

Câu hỏi mới nhất

Xem thêm »
Xem thêm »