Cho hàm số . Biết rằng đồ thị hàm số cắt trục Ox tại ba điểm phân biệt có hoành độ là . Hỏi phương trình có bao nhiêu nghiệm phân biệt thuộc đoạn
A. 3
B. 5
C. 7
D. 9
Chọn C.
Vì đồ thị hàm số f(x) cắt trục hoành tại 3 điểm phân biệt nên f(x) là hàm số bậc 3
Từ giả thiết ta có:
Khi đó:
Suy ra đồ thị hàm số y=f(x) có hai điểm cực trị nằm khác phía đối với trục tung.
Từ đó ta có phương trình
* Giải (1)
Vì nên Do đó phương trình (1) không có nghiệm thỏa mãn đề bài.
*
Vì nên ta phải có
Suy ra phương trình (2) có 3 nghiệm thỏa mãn là:
* (với
Vì nên ta thấy phương trình (3) có các nghiệm thỏa mãn là và
Vậy phương trình đã cho có tất cả 7 nghiệm thỏa mãn yêu cầu đề bài.
Cho hàm số y=f(x) liên tục trên [-2;4] và có bảng biến thiên như sau
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=|f(x)| trên đoạn [-2;4]. Tính
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=4a, BC=2a, AA'=2a. Tính sin của góc giữa đường thẳng BD' và mặt phẳng (A'C'D)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA=a, SA vuông góc với mặt đáy. Thể tích của khối chóp S.ABCD là
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hình chóp S.ABC có Tam giác ABC vuông tại B, AB=a, . Tính cosin của góc tạo bởi hai mặt phẳng (SBC) và (ABC)
Hộp đựng 3 bi xanh, 2 bi đỏ, 3 bi vàng. Tính xác suất để chọn được 4 bi đủ 3 màu là:
Cho hình lăng trụ ABC.A'B'C' có thể tích là V. Gọi M,N,P là trung điểm các cạnh AA', AB, B'C'. Mặt phẳng (MNP) chia khối lăng trụ thành hai phần. Tính thể tích phần chứa đỉnh B theo V
Có bao nhiêu tiếp tuyến của đồ thị hàm số mà tiếp tuyến đó tạo với hai trục tọa độ một tam giác vuông cân?
Cho hàm số y=f(x) có đạo hàm là . Hỏi hàm số f(x) có bao nhiêu điểm cực tiểu?