Cho hình lăng trụ ABC.A’B’C’. Gọi M, N, P lần lượt là các điểm thuộc các cạnh AA’, BB’, CC’ sao cho AM=2MA’, NB’=2NB, PC=PC’. Gọi V1, V2 lần lượt là thể tích của hai khối đa diện ABCMNP và A’B’C’MNP. Tính tỷ số .
A.
B.
C.
D.
Cho hàm số f(x) liên tục trên R và có bảng biến thiên như hình bên.
Số giá trị nguyên của tham số m để phương trình có đúng 4 nghiệm phân biệt thuộc đoạn là
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a, góc giữa mặt bên và mặt phẳng đáy là α thỏa mãn . Mặt phẳng (P) qua AC và vuông góc với mặt phẳng (SAD) chia khối chóp S.ABCD thành hai khối đa diện. Tỷ số thể tích của hai khối đa diện (khối bé chia khối lớn) bằng
Cho hàm số (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của m sao cho . Hỏi trong đoạn [-30;30] tập S có bao nhiêu số nguyên?
Cho hàm số y = x3-3x2 có đồ thị (C) và điểm M(m;-4).Hỏi có bao nhiêu số nguyên m thuộc đoạn [-10;10] sao cho qua điểm M có thể kẻ được ba tiếp tuyến đến (C).
Trong không gian Oxyz, cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1) và mặt phẳng (α) có phương trình 2x+2y+z-3=0. Biết rằng tồn tại duy nhất điểm M(a;b;c) thuộc mặt phẳng (α) sao cho MA=MB=MC. Đẳng thức nào sau đây đúng?
Cho hình chóp S.ABCD có các cạnh bên SA, SB, SC tạo với đáy các góc bằng nhau và đều bằng 30o. Biết AB=5, AC=8, BC=7, khoảng cách từ A đến mặt phẳng (SBC) bằng
Trong các hàm số sau, hàm số nào đồng biến trên tập xác định của nó?
Cho hàm số f(x) = x3-(2m+1)x2+3mx-m có đồ thị (Cm). Có bao nhiêu giá trị nguyên của tham số m thuộc (-2018;2018] để đồ thị (Cm) có hai điểm cực trị nằm khác phía so với trục hoành.
Cho hàm số y = f(x) liên tục trên R. Hàm số y = f’(x) có đồ thị như hình vẽ. Bất phương trình nghiệm đúng với mọi khi và chỉ khi
Cho một hình nón đỉnh S có chiều cao bằng 8cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có đường sinh bằng 4cm. Tính thể tích của khối nón (N).
Cho hàm số y = f(x) liên tục trên R, có đồ thị như hình vẽ. Các giá trị của tham số m để phương trình có ba nghiệm phân biệt là