Hàm số \[y = \left( {x + 1} \right)\left( {x - 2} \right)\left( {3 - x} \right)\] có số điểm cực trị là:
A. 2
B. 3
C. 0
D. 1
Ta có .
.
Vậy hàm số đã cho có 2 điểm cực trị.
Đáp án A.
Tìm tất cả các điểm M nằm trên đồ thị hàm số mà tiếp tuyến của đồ thị tại điểm đó song song với đường thẳng .
Cho hàm số \[y = \frac{{x + 1}}{{1 - x}}\] và điểm . Tìm tất cả các điểm M nằm trên đồ thị hàm số sao cho tiếp tuyến tại M vuông góc với IM.
Cho một hình trụ thay đổi nội tiếp trong một hình nón cố định cho trước (tham khảo hình vẽ bên). Gọi thể tích các khối nón và khối trụ tương ứng là V và V’. Biết rằng V’ là giá trị lớn nhất đạt được, khi đó tỉ số \[\frac{{V'}}{V}\] bằng:
Cho hình chóp S.ABC, đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt đáy. Biết SA = AB = BC và diện tích mặt cầu ngoại tiếp hình chóp bằng . Thể tích khối chóp là:
Cho hàm số . Tìm m để mọi bộ ba số phân biệt a, b, c thuộc đoạn thì là độ dài ba cạnh của một tam giác.
Cho hình lăng trụ đều ABC.A’B’C’, tất cả các cạnh có độ dài bằng a. Gọi M là trung điểm của cạnh BC. Tính khoảng cách giữa hai đường thẳng AM và BC’.
Cho tứ diện ABCD có ABC, ABD, ACD là các tam giác vuông tương ứng tại A, B, C. Góc giữa AD và (ABC) bằng , và khoảng cách giữa AD và BC bằng a. Tính thể tích khối tứ diện ABCD.
Cho một hình nón có thiết diện qua trục là một tam giác đều cạnh bằng 1. Tính thể tích khối càu nội tiếp trong hình nón.
Cho một hình nón đỉnh S đáy là đường tròn (O), bán kính đáy bằng 1. Biết thiết diện qua trục là một tam giác vuông. Tính diện tích xung quanh của hình nón.
Sau đây, có bao nhiêu hàm số mà đồ thị có đúng một tiệm cận ngang?
1) \[y = \frac{{\sin x}}{x}\] 2)
3) 4)