IMG-LOGO

Câu hỏi:

16/07/2024 119

Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y = \frac{{\sqrt {x - 1} + 2021}}{{\sqrt {{x^2} - 2mx + m + 2} }}\) có đúng ba đường tiệm cận.

A.\(2 < m \le 3.\)

Đáp án chính xác

B.\(2 < m < 3.\)

C.\(2 \le m \le 3.\)

D. \(m >2\) hoặc \(m < - 1.\)

Trả lời:

verified Giải bởi Vietjack

Ta có \(\exists \mathop {\lim }\limits_{x \to - \infty } y\) và \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {x - 1} + 2021}}{{\sqrt {{x^2} - 2mx + m + 2} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {\frac{1}{x} - \frac{1}{{{x^2}}}} + \frac{{2021}}{x}}}{{\sqrt {1 - \frac{{2m}}{x} + \frac{{m + 2}}{{{x^2}}}} }} = 0.\)

Suy ra đồ thị hàm số có một tiệm cận ngang có phương trình \(y = 0.\)

Để đồ thị hàm số có đúng ba đường tiệm cận thì phương trình \({x^2} - 2mx + m + 2 = 0\) có đúng hai nghiệm phân biệt \({x_1} >{x_2} \ge 1\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {m^2} - m - 2 >0\\\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \ge 0\\{x_1} - 1 + {x_2} - 1 >0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m + 1} \right)\left( {m - 2} \right) >0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 \ge 0\\{x_1} + {x_2} >2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {m + 1} \right)\left( {m - 2} \right) >0\\m + 2 - 2m + 1 \ge 0\\2m >2\end{array} \right. \Leftrightarrow 2 < m \le 3.\)

Vậy các giá trị \(2 < m \le 3\) thỏa mãn yêu cầu bài toán.

Đáp án A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với giá trị nào của \(m\) thì đồ thị hàm số \(y = \frac{{2{x^2} + 6mx + 4}}{{mx + 2}}\) đi qua điểm \(A\left( { - 1;4} \right)?\)

Xem đáp án » 22/06/2022 131

Câu 2:

Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = m{x^4} + \left( {m - 3} \right){x^2} + 3m - 5\) chỉ có cực tiểu mà không có cực đại.

Xem đáp án » 22/06/2022 121

Câu 3:

Cho đường cong \(\left( C \right)\) có phương trình \(y = \frac{{x - 1}}{{x + 1}}.\) Gọi \(M\) là giao điểm của \(\left( C \right)\) với trục tung. Tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là

Xem đáp án » 22/06/2022 101

Câu 4:

Số giao điểm của hai đồ thị \(y = f\left( x \right)\) và \(y = g\left( x \right)\) bằng số nghiệm phân biệt của phương trình nào sau đây?

Xem đáp án » 22/06/2022 100

Câu 5:

Tìm \(m\) để phương trình \({x^6} + 6{x^4} - {m^2}{x^3} + \left( {15 - 3{m^2}} \right){x^2} - 6mx + 10 = 0\) có đúng hai nghiệm phân biệt thuộc \[\left[ {\frac{1}{2};2} \right]?\]

Xem đáp án » 22/06/2022 100

Câu 6:

Công thức tính thể tích khối cầu bán kính \(R\) là:

Xem đáp án » 22/06/2022 89

Câu 7:

Giả sử các biểu thức chứa logarit đều có nghĩa. Mệnh đề nào sau đây đúng?

Xem đáp án » 22/06/2022 89

Câu 8:

Cho \(a\) là số thực dương và \(m,n\) là các số thực tùy ý. Trong các tính chất sau, tính chất nào đúng?

Xem đáp án » 22/06/2022 88

Câu 9:

Cho tứ diện \(ABCD\) có \(AB = 2a,AC = 3a,AD = 4a,\widehat {BAC} = \widehat {CAD} = \widehat {DAB} = {60^0}.\) Thể tích khối tứ diện \(ABCD\) bằng

Xem đáp án » 22/06/2022 88

Câu 10:

Công thức tính thể tích khối chóp có diện tích đáy \(B\) và chiều cao \(h\) là

Xem đáp án » 22/06/2022 80

Câu 11:

Cho đồ thị \(\left( {{C_m}} \right):y = {x^3} - 2{x^2} + \left( {1 - m} \right)x + m.\) Khi m=m0 thì \(\left( {{C_m}} \right)\) cắt trục hoành tại ba điểm phân biệt có hoành độ \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^2 + x_2^2 + x_3^2 = 4.\) Khẳng định nào sau đây đúng?

Xem đáp án » 22/06/2022 79

Câu 12:

Diện tích mặt cầu ngoại tiếp một tứ diện đều cạnh \(a\) là

Xem đáp án » 22/06/2022 75

Câu 13:

Cho khối chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(B,SA\) vuông góc với đáy và \(SA = AB = 6a.\) Tính thể tích khối chóp \(S.ABC\).

Xem đáp án » 22/06/2022 74

Câu 14:

Đồ thị của hai hàm số \(y = 4{x^4} - 2{x^2} + 1\) và \(y = {x^2} + x + 1\) có tất cả bao nhiêu điểm chung?

Xem đáp án » 22/06/2022 73

Câu 15:

Thể tích khối lập phương có cạnh bằng \(3a\) là

Xem đáp án » 22/06/2022 72

Câu hỏi mới nhất

Xem thêm »
Xem thêm »