Tìm \(m\) để phương trình \({x^6} + 6{x^4} - {m^2}{x^3} + \left( {15 - 3{m^2}} \right){x^2} - 6mx + 10 = 0\) có đúng hai nghiệm phân biệt thuộc \[\left[ {\frac{1}{2};2} \right]?\]
A.\(2 < m \le \frac{5}{2}.\)
B.\(\frac{{11}}{5} < m < 4.\)
C.\(\frac{7}{5} \le m < 3.\)
D. \(0 < m < \frac{9}{4}.\)
Phương trình đã cho tương đương với
\(\left( {{x^6} + 6{x^4} + 12{x^2} + 8} \right) - \left( {{m^3}{x^3} + 2{m^2}{x^2} + 3mx + 1} \right) + \left( {3{x^2} - 3mx + 3} \right) = 0\)
\( \Leftrightarrow {\left( {{x^2} + 2} \right)^3} - {\left( {mx + 1} \right)^3} + 3\left( {{x^2} - mx + 1} \right) = 0\)
\( \Leftrightarrow \left( {{x^2} - mx + 1} \right)\left[ {{{\left( {{x^2} + 2} \right)}^2} + \left( {{x^2} + 2} \right)\left( {mx + 1} \right) + {{\left( {mx + 1} \right)}^2} + 3} \right] = 0\)
\( \Leftrightarrow {x^2} - mx + 1 = 0\) (Vì \({a^2} + ab + {b^2} = {\left( {a + \frac{1}{2}b} \right)^2} + \frac{3}{4}{b^2} \ge 0,\forall a,b).\)
\( \Leftrightarrow x + \frac{1}{x} = m\) (Do \(x = 0\) không thỏa mãn phương trình này).
Xét hàm số \(f\left( x \right) = x + \frac{1}{x}\) trên đoạn \(\left[ {\frac{1}{2};2} \right].\) Ta có:
\(f'\left( x \right) = 1 - \frac{1}{{{x^2}}}\)
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1 \notin \left( {\frac{1}{2};2} \right)\\x = 1 \in \left( {\frac{1}{2};2} \right)\end{array} \right.\)
Ta có bảng biến thiên
Từ bảng biến thiên trên suy ra để phương trình đã cho có đúng 2 nghiệm thỏa mãn \(\left[ {\frac{1}{2};2} \right]\) thì \(2 < m \le \frac{5}{2}.\)
Với giá trị nào của \(m\) thì đồ thị hàm số \(y = \frac{{2{x^2} + 6mx + 4}}{{mx + 2}}\) đi qua điểm \(A\left( { - 1;4} \right)?\)
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = m{x^4} + \left( {m - 3} \right){x^2} + 3m - 5\) chỉ có cực tiểu mà không có cực đại.
Tìm tất cả các giá trị của tham số \(m\) sao cho đồ thị hàm số \(y = \frac{{\sqrt {x - 1} + 2021}}{{\sqrt {{x^2} - 2mx + m + 2} }}\) có đúng ba đường tiệm cận.
Cho đường cong \(\left( C \right)\) có phương trình \(y = \frac{{x - 1}}{{x + 1}}.\) Gọi \(M\) là giao điểm của \(\left( C \right)\) với trục tung. Tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là
Số giao điểm của hai đồ thị \(y = f\left( x \right)\) và \(y = g\left( x \right)\) bằng số nghiệm phân biệt của phương trình nào sau đây?
Giả sử các biểu thức chứa logarit đều có nghĩa. Mệnh đề nào sau đây đúng?
Cho \(a\) là số thực dương và \(m,n\) là các số thực tùy ý. Trong các tính chất sau, tính chất nào đúng?
Cho tứ diện \(ABCD\) có \(AB = 2a,AC = 3a,AD = 4a,\widehat {BAC} = \widehat {CAD} = \widehat {DAB} = {60^0}.\) Thể tích khối tứ diện \(ABCD\) bằng
Công thức tính thể tích khối chóp có diện tích đáy \(B\) và chiều cao \(h\) là
Cho đồ thị \(\left( {{C_m}} \right):y = {x^3} - 2{x^2} + \left( {1 - m} \right)x + m.\) Khi thì \(\left( {{C_m}} \right)\) cắt trục hoành tại ba điểm phân biệt có hoành độ \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^2 + x_2^2 + x_3^2 = 4.\) Khẳng định nào sau đây đúng?
Cho khối chóp \(S.ABC\) có đáy là tam giác vuông cân tại \(B,SA\) vuông góc với đáy và \(SA = AB = 6a.\) Tính thể tích khối chóp \(S.ABC\).
Đồ thị của hai hàm số \(y = 4{x^4} - 2{x^2} + 1\) và \(y = {x^2} + x + 1\) có tất cả bao nhiêu điểm chung?