Một lớp có 36 chiếc ghế đơn được xếp thành hình vuông Giáo viên muốn xếp 36 học sinh của lớp, trong đó có em Kỷ và Hợi ngồi vào số ghế trên, mỗi học sinh ngồi một ghế. Xác suất để hai em Kỷ và Hợi ngồi cạnh nhau theo hàng dọc hoặc hàng ngang là
A.
B.
C.
D.
Xếp 36 em học sinh vào 36 ghế Không gian mẫu
Gọi A là biến cố: “Hai em Kỷ và Hợi ngồi cạnh nhau theo một hàng ngang hoặc một hàng dọc”.
Chọn 1 hàng hoặc cột để xếp Kỷ và Hợi có 12 cách.
Trên mỗi hàng hoặc cột xếp 2 em Kỷ và Hợi gần nhau có 5.2 = 10 cách.
Sắp xếp 34 bạn còn lại có 34! cách.
Vậy xác suất của biến cố A là:
Chọn D
Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng và biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là một hình chữ nhật có hai kích thước là
Cho hàm số có bảng biến thiên như hình bên.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hai số thực thay đổi thỏa mãn .Giá trị lớn nhất của biểu thức là với là các số nguyên dương và tối giản. Tính .
Cho không gian , cho điểm và hai đường thẳng , . Viết phương trình mặt phẳng đi qua và song song với hai đường thẳng .
Tìm số giá trị nguyên thuộc đoạn của tham số để đồ thị hàm số có đúng hai đường tiệm cận.
Trong không gian cho mặt phẳng và đường thẳng . Mệnh đề nào sau đây đúng ?
Cho hàm số có đồ thị như hình dưới đây
Có tất cả bao nhiêu giá trị nguyên của tham số để phương trình có nghiệm phân biệt
Cho hàm số liên tục trên R và có đồ thị như hình vẽ bên. Biết rằng diện tích các hình phẳng (A), (B) lần lượt bằng 3 và 7. Tích phân bằng
Cho các số thực thỏa mãn . Tính khi biểu thức đạt giá trị lớn nhất.