Cho \(x,y,z\) là ba số dương lập thành cấp số nhân; còn \({\log _a}x;{\log _{\sqrt a }}y;{\log _{\sqrt[3]{a}}}z\) lập thành cấp số cộng. Tính giá trị của biểu thức \(Q = \frac{{2017x}}{y} + \frac{{2y}}{z} + \frac{z}{x}.\)
A. 2019.
B. 2021.
C. 2020.
D. 2018.
Đáp án C.
Theo bài ra, \(x,y,z\) là ba số dương lập thành cấp số nhận và \({\log _a}x;{\log _{\sqrt a }}y;{\log _{\sqrt[3]{a}}}z\) lập thành cấp số cộng nên ta có: \(\left\{ \begin{array}{l}xz = {y^2}\\{\log _a}x + {\log _{\sqrt[3]{a}}}z = 2{\log _{\sqrt a }}y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x.z = {y^2}\\{\log _a}x + 3{\log _a}z + 4{\log _a}y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x.z = {y^2}\\{\log _a}x{z^3} = {\log _a}{y^4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}xz = {y^2}\\x{z^3} = {y^4}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x.z = {y^2}\\{y^2}{z^2} = {y^4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x.y = {y^2}\\z = y\end{array} \right. \Leftrightarrow x = y = z.\)
Do đó: \(Q = \frac{{2017x}}{y} + \frac{{2y}}{z} + \frac{z}{x} = \frac{{2017x}}{x} + \frac{{2x}}{x} + \frac{x}{x} = 2017 + 2 + 1 = 2020.\)
Phương trình tiệm cận ngang của đồ thị hàm số \(y = \frac{{4 - 3x}}{{4x + 5}}\) là
Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 2x + 3\) tại điểm \(M\left( {2;7} \right)\) là
Mặt cầu \(\left( S \right)\) có tâm \(I\) bán kính \(R\) có diện tích bằng
Cho hàm số \(f\left( x \right) = {x^5} + 3{x^3} - 4m.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {\sqrt[3]{{f\left( x \right) + m}}} \right) = {x^3} - m\) có nghiệm thuộc đoạn \(\left[ {1;2} \right]?\)
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,SA\) vuông góc với mặt đáy và \(SA = a\sqrt 2 .\) Góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng
Đội văn nghệ của lớp 12A có 5 học sinh nam và 7 học sinh nữ. Có bao nhiêu cách chọn ra 2 học sinh của đội văn nghệ sao cho 2 học sinh có 1 học sinh nam và 1 học sinh nữ.
Cho hàm số \(y = - {x^3} - 3\left( {m + 1} \right){x^2} + 3\left( {2m - 1} \right)x + 2020.\) Có bao nhiêu giá trị nguyên \(m\) để hàm số nghịch biến trên \(\left( { - \infty ; + \infty } \right)?\)
Gọi \(S\) là tập hợp các số tự nhiên có bốn chữ số đôi một khác nhau lập từ các số \(0;1;2;3;4;5;6;7.\) Chọn ngẫu nhiên 1 số từ tập hợp \(S.\) Tính xác suất để số được chọn có đúng 2 chữ số chẵn.
Cho \(\left( {{u_n}} \right)\) là một cấp số cộng có \({u_1} = 3\) và công sai d=2. Tìm \({u_{20}}?\)
Số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {x + 4} - 2}}{{{x^2} - x}}\) là
Gọi S là tổng các nghiệm của phương trình \(\log _{\frac{1}{2}}^2x - 6{\log _6}\left( {4x} \right) + 1 = 0.\). Tính giá trị của \(S.\)
Hệ số của \({x^5}\) trong khai triển \({x^2}{\left( {x - 2} \right)^5} + {\left( {2x - 1} \right)^6}\) bằng
Cho hàm số \(f\left( x \right),\) bảng xét dấu của \(f'\left( x \right)\) như sau:
Hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên khoảng nào dưới đây?
Tập nghiệm của bất phương trình \({6.9^x} - {12.6^x} + {6.4^x} \le 0\) có dạng \(S = \left[ {a;b} \right].\) Giá trị của biểu thức \({a^2} + {b^2}\) bằng