Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên ở hình vẽ. Hàm số có giá trị cực tiểu bằng
A.1.
B.3.
C.\( - 1.\)
Đáp án D.
Dựa vào bảng biến thiên ta thấy \(y'\) đổi dấu từ âm sang dương khi \(x\) đi qua \({x_1} = - 1\) và \({x_3} = 1.\)
Mặt khác \(y\left( { - 1} \right) = y\left( 1 \right) = 0.\)
Vậy giá trị cực tiểu của hàm số là 0.
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = mx - \frac{1}{{{x^3}}} + 2{x^3}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) là
Tổng các nghiệm của phương trình \(\log _2^2\left( {3x} \right) + {\log _3}\left( {9x} \right) - 7 = 0\) bằng
Hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 3,BC = 4,SC = 5.\) Tam giác \(SAC\) nhọn và nằm trong mặt phẳng vuông góc với \(\left( {ABCD} \right).\) Các mặt \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) tạo với nhau một góc \(\alpha \) và \(\cos \alpha = \frac{3}{{\sqrt {29} }}.\) Tính thể tích khối chóp \(S.ABCD\)
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(B,BB' = a\) và \(AC = a\sqrt 2 .\) Thể tích của khối lăng trụ đã cho bằng
Ba bạn tên Học, Sinh, Giỏi mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn \(\left[ {1;19} \right].\) Tính xác suất để ba số viết ra có tổng chia hết cho 3
Cho \(a,b\) là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
Cho hàm số \(y = \frac{{x - \sqrt {{x^2} + 2x} }}{{{x^2} + mx - m - 3}}\) có đồ thị \(\left( C \right)\). Giá trị của \(m\) để \(\left( C \right)\) có đúng hai tiệm cận thuộc tập nào sau đây?
Cho cấp số nhân \(\left( {{u_n}} \right)\), biết \({u_1} = 1;{u_4} = 64.\) Công bội \(q\) của cấp số nhân bằng
Phương trình \(\log _2^2x = {\log _2}\frac{{{x^4}}}{2}\) có nghiệm là \(a,b.\) Khi đó \(a.b\) bằng
Hàm số \(y = {x^3} - 2x,\) hệ thức liên hệ giữa giá trị cực đại \(\left( {{y_{CD}}} \right)\) và giá trị cực tiểu \(\left( {{y_{CT}}} \right)\) là:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^3}{\left( {x + 1} \right)^2}\left( {x - 2} \right).\) Số điểm cực trị của hàm số đã cho là