Cho hàm số \(y = {x^3} - 3{x^2} + mx - 1\) với \(m\) là tham số thực. Tìm tất cả các giá trị của tham số \(m\) để hàm số đạt cực trị tại hai điểm \({x_1};{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 6.\)
A. 1.
B.\( - 3.\)
C. 3.
D. \( - 1.\)
Đáp án B.
Tập xác định: \(D = \mathbb{R}.\)
Ta có: \(y' = 3{x^2} - 6x + m\)
Hàm số đã cho có cực trị \( \Leftrightarrow y' = 0\) có hai nghiệm phân biệt.
Hay: \(\Delta ' = 9 - 3m >0 \Leftrightarrow m < 3.\left( 1 \right)\)
Khi đó \(y' = 0\) có hai nghiệm \({x_1};{x_2}\) thỏa mãn: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}.{x_2} = \frac{m}{3}\end{array} \right.\)
Theo bài ra: \(x_1^2 + x_2^2 = 6 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 6 \Leftrightarrow {2^2} - \frac{{2m}}{3} = 6 \Leftrightarrow m = - 3\) (thỏa mãn (1)).
Vậy với \(m = - 3\) thỏa mãn yêu cầu bài toán.
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = mx - \frac{1}{{{x^3}}} + 2{x^3}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) là
Tổng các nghiệm của phương trình \(\log _2^2\left( {3x} \right) + {\log _3}\left( {9x} \right) - 7 = 0\) bằng
Hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 3,BC = 4,SC = 5.\) Tam giác \(SAC\) nhọn và nằm trong mặt phẳng vuông góc với \(\left( {ABCD} \right).\) Các mặt \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) tạo với nhau một góc \(\alpha \) và \(\cos \alpha = \frac{3}{{\sqrt {29} }}.\) Tính thể tích khối chóp \(S.ABCD\)
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(B,BB' = a\) và \(AC = a\sqrt 2 .\) Thể tích của khối lăng trụ đã cho bằng
Ba bạn tên Học, Sinh, Giỏi mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn \(\left[ {1;19} \right].\) Tính xác suất để ba số viết ra có tổng chia hết cho 3
Cho \(a,b\) là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
Cho hàm số \(y = \frac{{x - \sqrt {{x^2} + 2x} }}{{{x^2} + mx - m - 3}}\) có đồ thị \(\left( C \right)\). Giá trị của \(m\) để \(\left( C \right)\) có đúng hai tiệm cận thuộc tập nào sau đây?
Cho cấp số nhân \(\left( {{u_n}} \right)\), biết \({u_1} = 1;{u_4} = 64.\) Công bội \(q\) của cấp số nhân bằng
Phương trình \(\log _2^2x = {\log _2}\frac{{{x^4}}}{2}\) có nghiệm là \(a,b.\) Khi đó \(a.b\) bằng
Hàm số \(y = {x^3} - 2x,\) hệ thức liên hệ giữa giá trị cực đại \(\left( {{y_{CD}}} \right)\) và giá trị cực tiểu \(\left( {{y_{CT}}} \right)\) là:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^3}{\left( {x + 1} \right)^2}\left( {x - 2} \right).\) Số điểm cực trị của hàm số đã cho là