Cho f(x) là hàm số bậc ba thỏa mãn f(0) = 2 và f'(1) = 0. Hàm số f'(x) có bảng biến thiên như sau:
Hàm số có bao nhiêu điểm cực trị?
Chọn A.
Giả sử
Ta có
Dựa vào bảng biến thiên, ta suy ra đồ thị hàm số f'(x) đối xứng nhau qua trục tung nên là hàm chẵn suy ra b = 0.
Khi đó
Mặt khác cũng từ bảng biến thiến và giả thiết, ta có
Khi đó
Mà .
Vậy
Xét hàm số ta thấy h(x) là một hàm chẵn nên nhận trục tung là trục đối xứng, vì vậy số điểm cực trị của h(x) chính bằng hai lần số cực trị dương của hàm số công thêm 1.
Xét hàm số trên ta có
(do x > 0).
Bảng biến thiên
Từ bảng biến thiên, ta suy ra số điểm cực trị của hàm số h(x) là 2.2 + 1 = 5
Mặt khác, đồ thị của hàm số g(x) đối xứng qua Ox, do đó số điểm cực trị của hàm số g(x) bằng số điểm cực trị của hàm số h(x) cộng với số nghiệm bội lẻ của phương trình h(x) = 0.
Dựa vào bảng biến thiên ta có thấy h(x) = 0 có ha nghiệm bội đơn.
Vậy hàm số g(x) có tất cả 5 + 2 = 7 điểm cực trị.
Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên. Xác suất để chọn được số chia hết cho 3 bằng
Trong không gian Oxyz, cho hai mặt phẳng và Giao tuyến của (P) và (Q) có phương trình tham số là
Cho hàm số f(x), đồ thị của hàm số y = f'(x) là đường cong trong hình vẽ bên dưới. Giá trị lớn nhất của hàm số trên đoạn bằng
Trong không gian Oxyz, gọi là mặt phẳng cắt ba trục tọa độ tại ba điểm A(2; 0; 0), B(0; -3; 0), C(0; 0; 4). Phương trình của mặt phẳng là
Thể tích của khối lăng trụ tam giác đều có tất cả các cạnh đều bằng a là
Trên mặt phẳng tọa độ, điểm biểu diễn số phức 2 - 3i có tọa độ là