Thứ sáu, 01/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 170

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình

Hai đội bóng bàn của hai trường phổ thông thi đấu nhau. Mỗi cầu thủ của đội này phải thi đấu với mỗi cầu thủ của đội kia một trận. Biết rằng tổng số trận đấu bằng 4 lần tổng số cầu thủ hai đội và số cầu thủ của ít nhất một trong hai đội là số lẻ. Hỏi mỗi đội có bao nhiêu cầu thủ?

2) Cho Parabol \[\left( P \right):y = {x^2}\] và đường thẳng \[\left( d \right):2x - {m^2} + 9\]

a) Tìm tọa độ các giao điểm của Parabol (P) và đường thẳng (d) khi \[m = 1\]

b) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung

Trả lời:

verified Giải bởi Vietjack

1) Gọi x và y lần lượt là số cầu thủ của mỗi đội (x, y nguyên dương)

Giả sử x là số lẻ

Vì mỗi cầu thủ của đội này phải thi đấu với mỗi cầu thủ của đội kia một trận nên tổng số trận đấu là x.y

Vì tổng số trận đấu bằng 4 lần tổng số cầu thủ của cả 2 đội nên ta có phương trình \[x.y = 4\left( {x + y} \right)\]

\[ \Leftrightarrow x.y - 4x - 4y + 16 = 16 \Leftrightarrow \left( {x - 4} \right)\left( {y - 4} \right) = 16\]

Vì x, y là số nguyên dương nên : \[x - 4 \ge  - 3\] và \[y - 4 \ge  - 3\]

Mặt khác x là số lẻ nên \[x - 4\] là số lẻ

Mà 16 chỉ phân tích được thành tích của 2 số trong đó có một số lẻ là : \[16 = 1.16\]

\[ \Leftrightarrow \left\{ \begin{array}{l}x - 4 = 1\\y - 4 = 16\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 20\end{array} \right.\](thỏa mãn điều kiện )

Vậy một đội có 5 cầu thủ, đội còn lại có 20 cầu thủ

2)

a) Với \[m = 1\], ta có \[\left( d \right):2x + 8\]

Phương trình hoành độ giao điểm của đường thẳng (d) với đồ thị (P) là :

\[{x^2} = 2x + 8 \Leftrightarrow {x^2} - 2x - 8 = 0 \Leftrightarrow {x^2} + 2x - 4x - 8 = 0\]

\[ \Leftrightarrow x\left( {x + 2} \right) - 4\left( {x + 2} \right) = 0 \Leftrightarrow \left( {x + 2} \right)\left( {x - 4} \right) = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 2 \Rightarrow y = 2.\left( { - 2} \right) + 8 = 4\\x = 4 \Rightarrow y = 2.4 + 8 = 16\end{array} \right.\]

Vậy tọa độ các giao điểm của (d) và (P) là \[\left( { - 2;4} \right)\] và \[\left( {4;16} \right)\]

b) Phương trình hoành độ của đường thẳng (d) và đồ thị (P) là :

\[{x^2} = 2x - {m^2} + 9 \Leftrightarrow {x^2} - 2x + \left( {{m^2} - 9} \right) = 0\left( 1 \right)\]

Để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung thì phương trình (1) có hai nghiệm trái dấu \[ \Leftrightarrow 1\left( {{m^2} - 9} \right) < 0\]

\[ \Leftrightarrow {m^2} - 9 < 0 \Leftrightarrow \left( {m - 3} \right)\left( {m + 3} \right) < 0 \Leftrightarrow  - 3 < m < 3\]

Vậy \[ - 3 < m < 3\] thì đường thẳng (d) cắt parabol (P) tại hai điểm nằm về hai phía của trục tung

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho biểu thức \[P = \left( {\frac{{\sqrt x }}{{\sqrt x  - 1}} - \frac{1}{{x - \sqrt x }}} \right):\left( {\frac{1}{{\sqrt x  + 1}} + \frac{2}{{x - 1}}} \right)\]

1) Tìm điều kiện xác định và rút gọn biểu thức P?

2) Tìm m thỏa mãn \[P\sqrt x  = m - \sqrt x ?\]

Xem đáp án » 25/06/2022 243

Câu 2:

Cho tam giác \[\Delta ABC\] vuông ở A. Trên cạnh AC lấy 1 điểm M, dựng đường tròn tâm (O) có đường kính MC. Đường thẳng BM cắt đường tròn tâm (O) tại D, đường thẳng AD cắt đường tròn tâm (O) tại S

1) Chứng minh tứ giác ABCD là tứ giác nội tiếp và CA là tia phân giác của góc \[\widehat {BCS}\]

2) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh các đường thẳng BA, EM, CD đồng quy

3) Chứng minh M là tâm đường tròn nội tiếp tam giác \[\Delta ADE\]

Xem đáp án » 25/06/2022 205

Câu 3:

1) Giải hệ phương trình \[\left\{ \begin{array}{l}{x^2} - xy = 24\\2x - 3y = 1\end{array} \right.\]

2) Giải phương trình \[\frac{{x + 5}}{2} + \frac{{3 - 2x}}{4} = x - \frac{{7 + x}}{6}\]

3) Cho phương trình \[2{x^2} + \left( {2m - 1} \right)x + m - 1 = 0\]. Không giải phương trình, tìm giá trị của m để phương trình có hai nghiệm phân biệt \[{x_1};{x_2}\] thỏa mãn hệ thức \[3{x_1} - 4{x_2} = 11\]

Xem đáp án » 25/06/2022 189

Câu 4:

Cho x, y là hai số thực thỏa mãn : \[x > y\] và \[xy = 1\]. Chứng minh rằng \[\frac{{{{\left( {{x^2} + {y^2}} \right)}^2}}}{{{{\left( {x - y} \right)}^2}}} \ge 8\]

Xem đáp án » 25/06/2022 170

Câu hỏi mới nhất

Xem thêm »
Xem thêm »