Cho hình chữ nhật ABCD có AB = 8 cm; BC = 6 cm. Vẽ đường cao AH của ∆ADB.
a) Chứng minh: ∆AHB đồng dạng ∆BCD.
b) Chứng minh: AD2 = DH . DB.
c) Tính độ dài đoạn thẳng AH.
a) Vì ABCD là hình chữ nhật nên AB // CD.
Suy ra: (hai góc so le trong).
Xét ∆AHB và ∆BCD có:
(cmt).
Do đó ∆AHB ∆BCD (g.g).
b) Xét ∆AHD và ∆BAD có:
chung.
Do đó ∆AHD ∆BAD (g.g)
Suy ra .
Vậy AD2 = DH . BD (đpcm).
c) Xét ∆ABD vuông tại A, áp dụng định lý Py-ta-go, ta có:
BD2 = AB2 + AD2 = 82 + 62 = 100
Suy ra: BD = 10 (cm)
Từ câu a: ∆AHB ∆BCD suy ra .
Hay AH . BD = AB. BC.
Do đó (cm).
Vậy AH = 4,8 cm.
Một vòi nước chảy vào bể không có nước. Cùng lúc đó một vòi nước khác chảy từ bể ra. Mỗi giờ lượng nước vòi chảy ra bằng lượng nước chảy vào. Sau 5 giờ thì bên trong bể đạt tới dung tích bể. Hỏi nếu bể không có nước mà chỉ mở vòi chảy vào thì sau bao lâu thì đầy bể?
Giải các phương trình và bất phương trình sau:
a) (x – 2)(x + 7) = 0;
b) .