Một người lái ô tô dự định đi từ A đến B với vận tốc 48 km/h. Nhưng sau khi đi được 1 giờ với vận tốc đó, ô tô bị tàu hỏa chắn đường trong 10 phút. Để kịp đến B đúng thời gian đã định, người đó phải tăng vận tốc thêm 6 km/h. Tính độ dài quãng đường AB.
Gọi x (km) là độ dài quãng đường AB (ĐK: x > 48).
Thời gian dự định đi quãng đường AB là (giờ).
Sau khi đi được 1 giờ, quãng đường còn lại ô tô phải đi là: x – 48 (km).
Thời gian đi trên quãng đường còn lại sau khi tăng vận tốc là: (giờ).
Vì thời gian dự định đi bằng tổng thời gian thực tế đi và thời gian chờ tàu nên ta có phương trình:
Û 9x – 8(x – 48) = 504
Û 9x – 8x + 384 = 504
Û x = 504 – 384
Û x = 120 (TMĐK).
Vậy độ dài quãng đường AB là 120 km.
Cho hình thang ABCD (AB // CD). Gọi O là giao điểm của hai đường chéo AC và BD. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở E và G.
a) Chứng minh: OA . OD = OB . OC.
b) Cho AB = 5 cm, CD = 10 cm và OC = 6 cm. Hãy tính OA, OE.
c) Chứng minh rằng: .
Một hình lăng trụ đứng có đáy là tam giác vuông (như hình vẽ). Độ dài hai cạnh góc vuông của đáy là 5 cm, 12 cm, chiều cao của lăng trụ là 8cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đó.
Điền từ còn thiếu vào chỗ trống:
a) Nếu ba cạnh của tam giác này ................ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.
b) Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó ................. thì hai tam giác đó đồng dạng.
c) Nếu hai góc của tam giác này lần lượt ................... của tam giác kia thì hai tam giác đó đồng dạng với nhau.
d) Tam giác vuông này có một góc nhọn bằng góc nhọn của …...… kia thì hai tam giác vuông đó đồng dạng.
Giải các phương trình và bất phương trình sau:
a) 8x + 6 = 3x + 41;
b) ;
c)