Rút gọn biểu thức \[P = \frac{{\sqrt[5]{{{b^2}\sqrt b }}}}{{\sqrt[3]{{b\sqrt b }}}}(b > 0)\] ta được kết quả là:
A.P=1
B. \[P = {b^{\frac{1}{{30}}}}\]
C. \[P = {b^{\frac{6}{5}}}\]
D. P=b
\[P = \frac{{\sqrt[5]{{{b^2}\sqrt b }}}}{{\sqrt[3]{{b\sqrt b }}}} = \frac{{\sqrt[5]{{{b^2}.{b^{\frac{1}{2}}}}}}}{{\sqrt[3]{{b.{b^{\frac{1}{2}}}}}}} = \frac{{\sqrt[5]{{{b^{\frac{5}{2}}}}}}}{{\sqrt[3]{{{b^{\frac{3}{2}}}}}}} = \frac{{{b^{\frac{5}{{2.5}}}}}}{{{b^{\frac{3}{{2.3}}}}}} = 1\]
Vậy P=1.
Đáp án cần chọn là: A
Cho số thực a thỏa mãn \[{\left( {2 - a} \right)^{\frac{3}{4}}} > {\left( {2 - a} \right)^2}\]. Chọn khẳng định đúng:
Với giá trị nào của a thì đẳng thức \[\,\,\,\,\,\sqrt {a.\sqrt[3]{{a.\sqrt[4]{a}}}} = \sqrt[{24}]{{{2^5}}}.\frac{1}{{\sqrt {{2^{ - 1}}} }}\]đúng?
Đơn giản biểu thức \[A = {a^{\sqrt 2 }}{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}}\] ta được:
Cho \[n \in Z,n > 0\], với điều kiện nào của aa thì đẳng thức sau xảy ra: \[{a^{ - n}} = \frac{1}{{{a^n}}}\]?
Giá trị biểu thức \[P = \frac{{{{125}^6}.\left( { - {{16}^3}} \right)2.\left( { - {2^3}} \right)}}{{{{25}^3}.{{\left( { - {5^2}} \right)}^4}}}\] là:
Tính giá trị của biểu thức \[P = {\left( {2\sqrt 6 - 5} \right)^{2020}}{\left( {2\sqrt 6 + 5} \right)^{2021}}\].
Rút gọn biểu thức \[P = \left( {\sqrt {ab} - \frac{{ab}}{{a + \sqrt {ab} }}} \right):\frac{{\sqrt[4]{{ab}} - \sqrt b }}{{a - b}}\left( {a > 0,b > 0,a \ne b} \right)\] ta được kết quả là:
Đơn giản biểu thức \[P = \left( {{a^{\frac{1}{4}}} - {b^{\frac{1}{4}}}} \right)\left( {{a^{\frac{1}{4}}} + {b^{\frac{1}{4}}}} \right)\left( {{a^{\frac{1}{2}}} + {b^{\frac{1}{2}}}} \right)\,\,\,\,(a,b > 0)\] ta được:
Nếu \[{\left( {a - 2} \right)^{ - \frac{1}{4}}} \le {\left( {a - 2} \right)^{ - \frac{1}{3}}}\]thì khẳng định đúng là:
Rút gọn biểu thức \[B = \frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1\] ta được kết quả là: