Cho hai số \({\rm{a}} = \sqrt {10} + 1\), \({\rm{b}} = \sqrt {10} - 1\). Hãy chọn khẳng định đúng
A. \(\left( {{{\rm{a}}^2} + {{\rm{b}}^2}} \right) \in \mathbb{N}\);
B. \(\left( {{\rm{a}} + {\rm{b}}} \right) \in \mathbb{Q}\);
C. a2 + b2 = 20;
D. a.b = 99.
Đáp án đúng là: A
Ta có a2 + b2 = (\(\sqrt {10} \)+ 1)2 + (\(\sqrt {10} \)- 1)2 = 10 + 2\(\sqrt {10} \) + 1 + 10 – 2\(\sqrt {10} \) +1 = 22 \( \in \mathbb{N}\). Do đó đáp án A đúng, C sai
Ta lại có a + b = \(\sqrt {10} \)+1 +\(\sqrt {10} \) – 1 = \(2\sqrt {10} \notin \mathbb{Q}\). Do đó đáp án B sai.
Ta có: a.b = (\(\sqrt {10} \)+ 1)( \(\sqrt {10} \)– 1) =10 – \(\sqrt {10} \)+\(\sqrt {10} \)– 1 = 9. Do đó đáp án D sai.
Trong các câu sau, có bao nhiêu câu là mệnh đề?
a) Hãy đi nhanh lên!
b) Hà Nội là thủ đô của Việt Nam.
c) 4 + 5 + 7 = 15.
d) Năm 2018 là năm nhuận.
Cho mệnh đề A: “\[\forall x \in \mathbb{R},{x^2} - x + 7 < 0\]”. Mệnh đề phủ định của A là:
Với giá trị thực nào của x mệnh đề chứa biến P(x): “2x2 – 1 < 0” là mệnh đề đúng
Mệnh đề \[\forall x \in \mathbb{R},{x^2} - 2 + {\rm{a}} > 0\] với a là số thực cho trước. Tìm a để mệnh đề đúng
Cho mệnh đề chứa biến P(x): "x + 15 ≤ x2" với giá trị thực nào của x trong các giá trị sau P(x) là mệnh đề đúng