Elip \(\left( E \right):\frac{{{x^2}}}{{16}} + {y^2} = 4\) có tổng độ dài trục lớn và trục bé bằng:
A. 5;
B. 10;
C. 20;
D. 40.
Đáp án đúng là: C
Gọi phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có độ dài trục lớn \({A_1}{A_2} = \) 2a và độ dài trục bé là \({B_1}{B_2} = \)2b. Khi đó, xét \(\left( E \right):\frac{{{x^2}}}{{16}} + {y^2} = 4\)\( \Leftrightarrow \frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{4} = 1\)
\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 64\\{b^2} = 4\end{array} \right.\)
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; -1) và B(1 ; 5) là:
Viết phương trình tham số của đường thẳng d đi qua điểm M(6; -10) và vuông góc với trục Oy?
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x - 2y - 6 = 0 và \[{d_2}\]: 6x - 2y - 8 = 0
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y + 3 = 0\], biết tiếp tuyến song song với đường thẳng d: 2x – y – 18 = 0.
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 1 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
Đường thẳng d đi qua gốc tọa độ O và song song với đường thẳng – x + 2y + 3 = 0 có phương trình tham số là:
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta \): ax + by + c = 0. Khoảng cách từ điểm M đến \(\Delta \) được tính bằng công thức:
Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng ∆: 3x + y + 4 = 0 bằng:
Góc nào tạo bởi giữa hai đường thẳng: \({d_1}:x + \sqrt 3 y = 0\) và \({d_2}\): x + 10 = 0 .
Cho đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\]. Viết phương trình tiếp tuyến d của (C) tại điểm A (3; -4).
Với giá trị của c bằng bao nhiêu thì đường thẳng 3x + y – 2c = 0 đi qua điểm A(3 ; -1).
Khoảng cách từ điểm M(-1; 1) đến đường thẳng \[\Delta \]: 3x – 4y – 3 = 0 bằng: