Giải bài toán bằng cách lập hệ phương trình.
Do ảnh hưởng của dịch Covid – 19 nên trong tháng hai cả hai tổ công nhân chỉ làm được 700 sản phẩm. Sang tháng ba, tình hình dịch ổn định tổ I vượt mức 20%, tổ II vượt mức 15% nên cả hai tổ làm được 830 sản phẩm. Hỏi trong tháng hai mỗi tổ làm được bao nhiêu sản phẩm?
Gọi x và y lần lượt là số sản phẩm mà tổ I và tổ II làm được trong tháng 2 (700 > x, y > 0)
Tháng 2 hai tổ làm được 700 sản phẩm nên ta có: x + y = 700 (sản phẩm) (1)
Số sản phẩm tổ I làm được trong tháng 3 là: x + 20%.x = 1,2x (sản phẩm)
Số sản phẩm tổ II làm được trong tháng 3 là: y + 15%.y = 1,15y (sản phẩm)
Tháng 3 hai tổ làm được 830 sản phẩm nên ta có: 1,2x + 1,15y = 830 (sản phẩm) (2)
Từ (1) và (2) ta có hệ phương trình:
(thỏa mãn)
Vậy trong tháng 2 tổ I làm được 500 sản phẩm, tổ II làm được 200 sản phẩm.
với x ≥ 0; x ≠ 25.
1) Tính giá trị của biểu thức A khi .
2) Rút gọn biểu thức B.
3) Cho . Tìm số nguyên tố x sao cho |M| = −M.
Một tàu ngầm đang ở trên mặt biển thì lặn xuống theo phương tạo với mặt nước biển một góc 20°. Hỏi nếu tàu chuyển động theo phương lặn xuống được 200m thì nó ở độ sâu bao nhiêu mét so với mặt nước biển?
Câu 2: Cho (O; R) đường kính AB cố định. Lấy I thuộc OB sao cho . Dây MN ⊥ AB tại I. Điểm F chuyển động trên cung nhỏ AM (F ≠ A, F ≠ M). Tia AF cắt MN tại K. Nối BF cắt MN tại H.
a) Chứng minh: Tứ giác AFHI nội tiếp đường tròn.
b) Chứng minh: AF.AK =AB.AI .
c) Chứng minh từ đó chứng minh đường tròn ngoại tiếp ∆BHK luôn đi qua một điểm cố định khi F chuyển động trên cung nhỏ AM.
1) Giải hệ phương trình
2) Cho phương trình ẩn x: x2 – 5x + m + 4 = 0 (1)
a) Giải phương trình (1) với m = 2
b) Tìm m để phương trình (1) có 2 nghiệm phân biệt x1; x2 thỏa mãn