Cho hình thoi ABCD cạnh a. Gọi R và r lần lượt là bán kính các đường tròn ngoại tiếp tam giác ABD, ABC. Chứng minh rằng:
Gọi M, I, K là giao điểm của đường trung trực AB với AB, AC, BD, O là giao điểm của AC và BD.
Ta có: (Vì ABCD là hình thoi)
Nên AC là trung trực của BD, BD là trung trực của AC
Do đó I, K lần lượt là tâm đường tròn ngoại tiếp
Xét và có chung,
Do đó:
Tương tự ta có:
vuông tại O, theo định lý Pytago ta có:
Cho một tứ giác ABCD có 2 đường chéo AC, BD vuông góc với nhau. Gọi M, N, R, S lần lượt là trung điểm các cạnh AB, BC, CD, DA. Chứng minh rằng 4 điểm M, N, R, S cùng nằm trên đường tròn.
Cho tam giác ABC nhọn. Vẽ đường tròn (O) có đường kính BC, nó cắt cạnh AB, AC theo thứ tự ở D và E.
a) Chứng minh rằng
b) Gọi K là giao điểm của BE, CD. Chứng minh
Cho hình chữ nhật ABCD có AD = 9,3cm, CD = 12,4cm. Chứng minh rằng bốn điểm A, B, C, Dcùng thuộc một đường tròn. Tính bán kính của đường tròn đó.