Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập xác định của hàm số.
Hướng dẫn giải:
Xét hàm số: \(f(x) = \sqrt {2x + 7} \).
Tập xác định của hàm số là tập giá trị của x sao cho \(f(x) = \sqrt {2x + 7} \) có nghĩa.
Điều kiện xác định của hàm số là:
2x + 7 ≥ 0 ⇔ 2x ≥ –7 ⇔ \(x \ge \frac{{ - 7}}{2}\)
Vậy tập xác định của hàm số là: \(D = \left[ { - \frac{7}{2}; + \infty } \right)\).
Hàm số v = f(t) được cho bởi bảng như sau:
Tìm tập xác định của hàm số này.
Tập xác định của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 1}}\) là:
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tập giá trị của hàm số: \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là: