Tập giá trị của hàm số: \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là:
Hướng dẫn giải:
Đáp án đúng là: C.
Điều kiện xác định của hàm số \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là: 2x – 2 > 0 ⇔ 2x > 2 ⇔ x > 1.
Vậy tập xác định của hàm số \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là D = (1; +∞).
Với mọi giá trị x thuộc D = (1; +∞) ta dễ thấy: 2022 > 0 và \(\sqrt {2x - 2} \) > 0
Do đó, ta có: \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) > 0 với mọi x thuộc D = (1; +∞).
Vậy tập giá trị của hàm số \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là T = (0; +∞).
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập xác định của hàm số.
Hàm số v = f(t) được cho bởi bảng như sau:
Tìm tập xác định của hàm số này.
Tập xác định của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 1}}\) là:
Cho hàm số \(f(x) = \sqrt {2x + 7} \).