Cho định lý sau: “Nếu mỗi số nguyên a, b chia hết cho 7 thì tổng các bình phương của chúng chia hết cho 7”.
Phát biểu định lý đảo của định lý trên dưới dạng điều kiện đủ.
A. Mỗi số nguyên a, b chia hết cho 7 tương đương với tổng các bình phương của chúng chia hết cho 7;
B. Mỗi số nguyên a, b chia hết cho 7 là điều kiện đủ để tổng các bình phương của chúng chia hết cho 7;
C. Tổng bình phương của hai số nguyên a, b chia hết cho 7 là điều kiện đủ để mỗi số nguyên đó chia hết cho 7;
D. Mỗi số nguyên a, b chia hết cho 7 kéo theo tổng các bình phương của chúng chia hết cho 7.
Đáp án đúng là: C.
Xét mệnh đề “Nếu mỗi số nguyên a, b chia hết cho 7 thì tổng các bình phương của chúng chia hết cho 7” ta có:
P: “Mỗi số nguyên a, b chia hết cho 7”
Q: “Tổng bình phương của chúng chia hết cho 7”
Định lý đảo Q ⇒ P của định lý trên được phát biểu như sau:
“Nếu tổng bình phương của hai số a và b chia hết cho 7 thì mỗi số nguyên đó chi hết cho 7”.
Xét định lý đảo trên ta có :
A: “Tổng bình phương của hai số a và b chia hết cho 7”.
B: “Mỗi số nguyên đó chi hết cho 7”.
Ta thấy định lý trên có dạng A ⇒ B có thể được phát biểu dưới dạng điều kiện đủ như sau:
A là điều kiện đủ để có B.
Do đó định lý đã cho được phát biểu dưới dạng điều kiện đủ là:
“Tổng bình phương của hai số nguyên a, b chia hết cho 7 là điều kiện đủ để mỗi số nguyên đó chia hết cho 7”.
Cho mệnh đề sau: “Nếu x là một số nguyên tố lớn hơn 3 thì x2 + 20 là một hợp số (tức là số có ước khác 1 và chính nó)”.
Đáp án nào dưới đây là cách viết khác với mệnh đề đã cho?
Cho định lý sau: “Một tam giác là tam giác đều thì tam giác đó có ba đường phân giác bằng nhau”.
Phát biểu định lý đảo của định lý trên dưới dạng điều kiện cần.
Cho mệnh đề sau: “Trong một mặt phẳng, nếu hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì hai đường thẳng đó song song với nhau”.
Đáp án nào dưới đây là cách viết khác với mệnh đề đã cho?
Cho định lý sau: “Hai tam giác bằng nhau thì diện tích của chúng bằng nhau”.
Cho biết giả thiết, kết luận của định lý trên.
Cho định lý sau: “Nếu một số tự nhiên chỉ chia hết cho 1 và chính nó thì số đó là số nguyên tố”.
Phát biểu định lý trên dưới dạng điều kiện đủ.
Cho các mệnh đề sau:
(1) Nếu tích của hai số a và b lớn hơn 0 thì a và b đều dương.
(2) Nếu a, b là hai số nguyên dương thì tích của chúng cũng là một số nguyên dương.
(3) Nếu tích của hai số a và b là một số nguyên âm thì trong hai số đó phải có một số nguyên dương và một số nguyên âm.
Trong các mệnh đề trên, có bao nhiêu mệnh đề là định lý?
Cho định lý sau: “Nếu hai tam giác bằng nhau thì hai tam giác đó đồng dạng”.
Phát biểu định lý trên dưới dạng điều kiện cần.
Cho định lý sau: “Nếu tam giác có hai góc bằng 45° thì tam giác đó là tam giác vuông cân”.
Cho biết giả thiết, kết luận của định lý trên.