Cho tam giác ABC có a = 9; b = 12; c = 15. Xét dạng của tam giác ABC
Hướng dẫn giải:
Đáp án đúng là: D.
Cách 1: Dễ thấy \[{c^2} = {a^2} + {b^2}\left( {{{15}^2} = {9^2} + {{12}^2}} \right)\]
Do đó theo định lý Pythagore đảo, tam giác ABC vuông tại C.
Cách 2: Theo định lý côsin ta có: \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = 0\).
Do đó: \(\widehat C = 90^\circ \).
Vậy tam giác ABC vuông tại C.
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A tù khi và chỉ khi a2 > b2 + c2.
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A nhọn khi và chỉ khi a2 < b2 + c2;
Cho tam giác ABC có: \(\widehat B = 60^\circ \), a = 12, R = 4\(\sqrt 3 \). Xác định dạng của tam giác?
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A vuông khi và chỉ khi a2 = b2 + c2;
Cho tam giác ABC có a = 4, b = 6, c = 8. Khẳng định nào sau đây là đúng?
Cho tam giác ABC có a = 10, c = 5\(\sqrt 3 \), \(\widehat B = 30^\circ \). Tìm mệnh đề đúng trong các mệnh đề sau?