Hướng dẫn giải:
Đáp án đúng là: C.
Áp dụng hệ quả định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\); \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)
Ta có: \(\frac{a}{{\cos A}} = \frac{{2abc}}{{{b^2} + {c^2} - {a^2}}}\); \(\frac{b}{{\cos B}} = \frac{{2abc}}{{{a^2} + {c^2} - {b^2}}}\)
Để \(\frac{a}{{\cos A}} = \frac{b}{{\cos B}}\)\( \Leftrightarrow {b^2} + {c^2} - {a^2} = {a^2} + {c^2} - {b^2} \Leftrightarrow a = b\)
Do đó tam giác ABC là tam giác cân.
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A tù khi và chỉ khi a2 > b2 + c2.
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A nhọn khi và chỉ khi a2 < b2 + c2;
Cho tam giác ABC có: \(\widehat B = 60^\circ \), a = 12, R = 4\(\sqrt 3 \). Xác định dạng của tam giác?
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A vuông khi và chỉ khi a2 = b2 + c2;
Cho tam giác ABC có a = 4, b = 6, c = 8. Khẳng định nào sau đây là đúng?
Cho tam giác ABC có a = 9; b = 12; c = 15. Xét dạng của tam giác ABC
Cho tam giác ABC có a = 10, c = 5\(\sqrt 3 \), \(\widehat B = 30^\circ \). Tìm mệnh đề đúng trong các mệnh đề sau?