Hướng dẫn giải:
Đáp án đúng là: B.
Ta có: \(\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right) = 180^\circ - \left( {90^\circ + 23^\circ } \right) = 67^\circ \).
Lại có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
\( \Rightarrow b = \frac{{a.\sin B}}{{\sin A}} = 20.\sin 67^\circ \approx 18,41\).
Và \(c = \frac{{a.\sin C}}{{\sin A}} = 20.\sin 23^\circ \approx 7,81\).
Cho tam giác ABC biết a = 3, b = 5, c = 7. Tìm khẳng định đúng trong các khẳng định sau?
Cho hình thoi ABCD có cạnh bằng 2 cm và \(\widehat {ABC} = 60^\circ \). Tìm khẳng định SAI trong các khẳng định sau?
Tam giác ABC có b = 12, c = 15, \(\widehat A = 140^\circ \). Khi đó, tìm khẳng định sai trong các khẳng định dưới đây?
Cho tam giác ABC biết AB = 3, \(AC = 3\sqrt 2 \) và \(\widehat C = 45^\circ \). Trong các phương án dưới đây, chọn phương án SAI?