A. 9.
B. 6.
C. 4.
Đáp án đúng là: C
Ta có: Phương trình đoạn chắn của mặt phẳng (P) là: + + = 1
Vì mặt phẳng (P) đi qua điểm I (2; –3; 1) nên thay tọa độ điểm I vào phương trình đoạn chắn mặt phẳng (P) ta được: + + = 1
Þ + = 0 Þ =
Þ b = 3c (1)
Với A(2; 0; 0), B(0; b; 0), C(0; 0; c) ta có:
= (2; 0; 0), = (0; b; 0), = (0; 0; c)
Þ bc
Þ = 2bc.
Thể tích tứ diện OABC là . = .2bc = bc.
Vì thể tích khối tứ diện OABC bằng 1 nên:
bc = 1 Þ bc = 3 (2)
Thay (1) vào (2) ta có: 3c.c = 3
Þ c2 = 1 Þ c = 1 (do c > 0)
Þ b = 3.1 = 3.
Do đó: b + c = 3 + 1 = 4.
Vậy ta chọn phương án C.
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1; −2; 3) và cắt mặt phẳng Oxy tạo ra đường tròn giao tuyến có chu vi bằng 8π. Phương trình của mặt cầu (S) là
Khi tìm nguyên hàm , bằng cách đặt t = ta được nguyên hàm nào sau đây?
Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = , trục hoành và các đường thẳng x = 0, x = . Khối tròn xoay tạo thành khi quay (H) quanh trục hoành có thể tích bằng
Trong không gian Oxyz, cho tứ diện ABCD với A(3; −1; 1), B(−1; 0; 0), C(0; 1; 0), D(0; 0; 2). Chiều cao AH của tứ diện ABCD bằng:
Trong không gian Oxyz, mặt phẳng nào sau đây đi qua gốc tọa độ và vuông góc với đường thẳng = =
Trong không gian Oxyz, cho hai điểm M (2; 1; 0) và N (4; 3; 2). Gọi (P) là mặt phẳng trung trực của MN, phương trình của mặt phẳng (P) là
Trong không gian Oxyz, cho đường thẳng d: = = . Mặt phẳng (P) vuông góc với đường thẳng d, có vectơ pháp tuyến là
Hàm số F (x) = x + (với x ≠ 0) là một nguyên hàm của hàm số nào sau đây?