Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 113

Cho hệ bất phương trình: {0y4x0x-y-10. Miền nghiệm của hệ bất phương trình là:

A. Miền tứ giác;

B. Miền tam giác;

C. Miền ngũ giác;

Đáp án chính xác

D. Miền lục giác.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có: \[\left\{ {\begin{array}{*{20}{c}}{0 \le y \le 4}\\{x \ge 0}\\{x - y - 1 \le 0}\\{x + 2y - 10 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}y \ge 0\\y \le 4\end{array}\\{x \ge 0}\\{x - y - 1 \le 0}\\{x + 2y - 10 \le 0}\end{array}} \right.\]

Trên mặt phẳng Oxy:

• Biểu diễn miền nghiệm của bất phương trình: y ≥ 0.

Miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d1: y = 0) chứa điểm (0; 1).

• Biểu diễn miền nghiệm của bất phương trình: y ≤ 4.

Miền nghiệm của bất phương trình y ≤ 4 là nửa mặt phẳng (kể cả đường thẳng d2: y = 4) chứa điểm (0; 1).

• Biểu diễn miền nghiệm của bất phương trình: x ≥ 0.

Miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d3: x = 0) chứa điểm (1; 0).

• Biểu diễn miền nghiệm của bất phương trình: x – y – 1 ≤ 0.

Vẽ đường thẳng d4: x – y – 1 = 0 đi qua hai điểm (0; –1) và (1; 0).

Xét điểm O(0; 0) d1, ta có: 0 – 0 – 1 = –1 < 0 nên miền nghiệm của bất phương trình x – y – 1 ≥ 0 là nửa mặt phẳng (kể cả bờ d4) chứa điểm O(0; 0).

• Biểu diễn miền nghiệm của bất phương trình: x + 2y – 10 ≤ 0.

 Vẽ đường thẳng d5: x + 2y – 10 = 0 đi qua hai điểm (0; 5) và (10; 0).

Xét điểm O(0; 0) d1, ta có: 0 + 2.0 – 10 = –10 < 0 nên miền nghiệm của bất phương trình x + 2y – 10 ≤ 0 là nửa mặt phẳng (kể cả bờ d5) chứa điểm O(0; 0).

Miền không gạch chéo (kể cả bờ d1, d2, d3, d4 và d5) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.

Media VietJack

Vậy miền nghiệm của hệ bất phương trình là miền ngũ giác.

Ta chọn phương án C.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - 2y < 0\\m{x^2} + 3y > 0\\2x - \left( {{m^2} - m} \right){y^2} \le 0\end{array} \right.\) (với m là tham số). Giá trị m để hệ bất phương trình đó là hệ bất phương trình bậc nhất hai ẩn x và y là:

Xem đáp án » 15/10/2022 95

Câu 2:

Cho hệ bất phương trình: \(\left\{ \begin{array}{l}x + y - 2 \ge 0\\x - 3y + 3 < 0\end{array} \right..\) Chọn khẳng định đúng:

Xem đáp án » 15/10/2022 91

Câu 3:

Cho hệ bất phương trình \(\left\{ \begin{array}{l}3x + 2y < 1\,\,\,\,\,\,\,\,\left( 1 \right)\\x + \frac{2}{3}y < 1\,\,\,\,\left( 2 \right)\end{array} \right..\) Gọi S1 là miền nghiệm của bất phương trình (1), S2 là miền nghiệm của bất phương trình (2).

Cho các phát biểu sau:

(I) Miền nghiệm của hệ bất phương trình là S1;

(II) Miền nghiệm của hệ bất phương trình là S2;

(III) Hai bất phương trình của hệ có cùng miền nghiệm.

Số phát biểu đúng là:

Xem đáp án » 15/10/2022 86

Câu 4:

Cho hệ bất phương trình: \[\left\{ \begin{array}{l}2x + 3y + 6 \ge 0\\x \le 0\\2x - 3y + 1 \ge 0\end{array} \right..\] Khẳng định nào sau đây là sai?

Xem đáp án » 15/10/2022 85

Câu 5:

Cho các đường thẳng d1: 3x – 4y + 12 = 0, d2: x + y – 5 = 0 và d3: x + 1 = 0.

Miền không gạch chéo (kể cả bờ d1, d2, d3) trong hình vẽ bên dưới là miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình dưới đây?

Media VietJack

Xem đáp án » 15/10/2022 76

Câu 6:

Cho hệ bất phương trình \[\left\{ \begin{array}{l}x - 2y < 0\\x + 3y > - 2\end{array} \right.\] và các điểm A(–1; 0), B(1; 0), C(–3; 4) và D(0; 3). Miền nghiệm của hệ bất phương trình chứa bao nhiêu điểm trong bốn điểm trên?

Xem đáp án » 15/10/2022 75

Câu 7:

Cho hệ bất phương trình \(\left\{ \begin{array}{l}2x - y - 1 \ge 0\\4x - 3y - 2 \le 0\end{array} \right.\) . Miền nghiệm (miền không gạch chéo) của hệ bất phương trình được biểu diễn như trong hình vẽ nào sau đây?

Xem đáp án » 15/10/2022 69

Câu hỏi mới nhất

Xem thêm »
Xem thêm »