Cho biết sinα – cosα = \(\frac{1}{{\sqrt 5 }}\)(0° ≤ α, β ≤ 180°). Giá trị của \(E = \sqrt {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \) bằng:
Hướng dẫn giải
Đáp án đúng là: B
Ta có sinα – cosα = \(\frac{1}{{\sqrt 5 }}\).
\( \Rightarrow {\left( {\sin \alpha - \cos \alpha } \right)^2} = {\left( {\frac{1}{{\sqrt 5 }}} \right)^2}\)
\( \Rightarrow {\sin ^2}\alpha + {\cos ^2}\alpha - 2\sin \alpha \cos \alpha = \frac{1}{5}\)
\( \Rightarrow 1 - 2\sin \alpha \cos \alpha = \frac{1}{5}\) (Vì sin2α + cos2α = 1, áp dụng Bài tập 5a, trang 65, Sách giáo khoa Toán 10, Tập một)
\( \Rightarrow 2\sin \alpha \cos \alpha = \frac{4}{5}\)
\( \Rightarrow \sin \alpha \cos \alpha = \frac{2}{5}\)
\( \Rightarrow {\sin ^2}\alpha {\cos ^2}\alpha = \frac{4}{{25}}\)
Ta có \(E = \sqrt {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \)
\( = \sqrt {{{\left( {{{\sin }^2}\alpha } \right)}^2} + {{\left( {{{\cos }^2}\alpha } \right)}^2}} \)
\( = \sqrt {{{\left( {{{\sin }^2}\alpha } \right)}^2} + 2{{\sin }^2}\alpha {{\cos }^2}\alpha + {{\left( {{{\cos }^2}\alpha } \right)}^2} - 2{{\sin }^2}\alpha {{\cos }^2}\alpha } \)
\( = \sqrt {{{\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)}^2} - 2{{\sin }^2}\alpha {{\cos }^2}\alpha } \)
\( = \sqrt {{1^2} - 2.\frac{4}{{25}}} = \frac{{\sqrt {17} }}{5}\)
Vậy ta chọn phương án B.
Giá trị của biểu thức M = sin245° – 2sin250° + 3cos245° – 2sin2130° + 4tan55°.tan35° bằng:
Cho biết \(2\cos \alpha + \sqrt 2 \sin \alpha = 2\), với 0° < α < 90°. Giá trị của cotα bằng: