Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

12/07/2024 70

Cho biết A = B. Khẳng định nào sau đây sai?


A. A = {1; 3} và B = {x ℝ | (x – 1)(x – 3) = 0};


B. A = {1; 3; 5; 7; 9} và B = {n ℕ | n = 2k + 1, k ℤ, 0 ≤ k ≤ 4};

C. A = {– 1; 2} và B = {x ℝ |x2 – 2x – 3 = 0};

Đáp án chính xác

D. A = và B = {x ℝ | x2 + x + 1 = 0}.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có (x – 1)(x – 3) = 0

Suy ra x = 1 hoặc x = 3.

Vì x = 1 ℝ và x = 3 ℝ.

Nên B = {1; 3}.

Mà A = {1; 3}.

Do đó A = B.

Vậy phương án A đúng.

Vì k ℤ và 0 ≤ k ≤ 4 nên ta có k {0; 1; 2; 3; 4}.

Với k = 0, ta có n = 2k + 1 = 2.0 + 1 = 1 ℕ.

Với k = 1, ta có n = 2k + 1 = 2.1 + 1 = 3 ℕ.

Với k = 2, ta có n = 2k + 1 = 2.2 + 1 = 5 ℕ.

Với k = 3, ta có n = 2k + 1 = 2.3 + 1 = 7 ℕ.

Với k = 4, ta có n = 2k + 1 = 2.4 + 1 = 9 ℕ.

Suy ra B = {1; 3; 5; 7; 9}.

Mà A = {1; 3; 5; 7; 9}.

Do đó A = B.

Vậy đáp án B đúng.

Ta có x2 – 2x – 3 = 0.

Suy ra x = 3 ℝ hoặc x = – 1 ℝ.

Do đó B = {–1; 3}.

Mà A = {–1; 2} nên A ≠ B.

Vậy phương án C sai.

Ta có x2 + x + 1 = 0 (vô nghiệm).

Do đó B = .

Mà A = .

Suy ra A = B.

Do đó phương án D đúng.

Vậy ta chọn phương án C.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ba tập hợp A = [– 2; 2], B = [1; 5], C = [0; 1]. Khi đó tập (A \ B) ∩ C là:

Xem đáp án » 15/10/2022 126

Câu 2:

Cho các mệnh đề sau:

(1) “Nếu \(\sqrt 5 \)là số vô tỉ thì 5 là số hữu tỉ”.

(2) “Nếu tam giác ABC cân thì tam giác ABC đều”.

(3) “Nếu tứ giác ABCD là hình vuông thì tứ giác ABCD là hình chữ nhật”.

(4) “Nếu |x| > 1 thì x > 1”.

Số mệnh đề có mệnh đề đảo là mệnh đề đúng là:

Xem đáp án » 15/10/2022 83

Câu 3:

Cho hai tập khác rỗng E = (m – 1; 4] và F = (– 2; 2m + 2] với m . Xác định m để F E.

Xem đáp án » 15/10/2022 71

Câu 4:

Cho tập hợp \({C_\mathbb{R}}A = \left[ {0;6} \right)\), \({C_\mathbb{R}}B = \left( { - \frac{{12}}{3};5} \right) \cup \left( {\sqrt {17} ;\sqrt {55} } \right).\) Tập \({C_\mathbb{R}}\left( {A \cap B} \right)\)là:

Xem đáp án » 15/10/2022 71

Câu hỏi mới nhất

Xem thêm »
Xem thêm »