Cho hai tập khác rỗng E = (m – 1; 4] và F = (– 2; 2m + 2] với m ∈ ℝ. Xác định m để F ⊂ E.
Hướng dẫn giải
Đáp án đúng là: B
ĐKXĐ các tập E và F: \[\left\{ \begin{array}{l}m - 1 < 4\\2m + 2 > - 2\,\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 5\\m > - 2\,\end{array} \right. \Leftrightarrow - 2 < m < 5\].
Ta có: F ⊂ E (tập F là tập con của tập E)\[ \Leftrightarrow \left\{ \begin{array}{l}m - 1 \le - 2\\4 \ge 2m + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\m \le 1\end{array} \right. \Leftrightarrow m \le - 1\].
Kết hợp với điều kiện ta được – 2 < m ≤ – 1.
Vậy m ∈ (– 2; 1].
Cho ba tập hợp A = [– 2; 2], B = [1; 5], C = [0; 1]. Khi đó tập (A \ B) ∩ C là:
Cho các mệnh đề sau:
(1) “Nếu \(\sqrt 5 \)là số vô tỉ thì 5 là số hữu tỉ”.
(2) “Nếu tam giác ABC cân thì tam giác ABC đều”.
(3) “Nếu tứ giác ABCD là hình vuông thì tứ giác ABCD là hình chữ nhật”.
(4) “Nếu |x| > 1 thì x > 1”.
Số mệnh đề có mệnh đề đảo là mệnh đề đúng là:
Cho tập hợp \({C_\mathbb{R}}A = \left[ {0;6} \right)\), \({C_\mathbb{R}}B = \left( { - \frac{{12}}{3};5} \right) \cup \left( {\sqrt {17} ;\sqrt {55} } \right).\) Tập \({C_\mathbb{R}}\left( {A \cap B} \right)\)là: