IMG-LOGO

Câu hỏi:

12/07/2024 196

Từ vị trí A, người ta quan sát một cái cây cao mọc vuông góc với mặt đất như hình vẽ.

Media VietJack

Biết vị trí quan sát cách mặt đất một khoảng AH = 4 m và khoảng cách từ chân đường vuông góc của vị trí quan sát A trên mặt đất tới gốc cây là HB = 20 m, \(\widehat {BAC} = 45^\circ \). Chiều cao của cây gần nhất với giá trị nào sau đây?

A. 17,5 m;

Đáp án chính xác

B. 17 m;

C. 16,5 m;

D. 16 m.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Xét ∆ABH vuông tại H có \(\tan \widehat {ABH} = \frac{{AH}}{{HB}} = \frac{4}{{20}} = \frac{1}{5}\).

Suy ra \(\widehat {ABH} \approx 11^\circ 19'\).

Ta có CB BH (cái cây vuông góc với mặt đất)

Suy ra \(\widehat {CBH} = 90^\circ \).

Do đó \(\widehat {CBA} + \widehat {ABH} = 90^\circ \)

Vì vậy \(\widehat {CBA} = 90^\circ - \widehat {ABH} \approx 90^\circ - 11^\circ 19' = 78^\circ 41'\).

∆ABC có \(\widehat {CAB} + \widehat {CBA} + \widehat {ACB} = 180^\circ \) (định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat {ACB} = 180^\circ - \left( {\widehat {CAB} + \widehat {CBA}} \right) \approx 180^\circ - \left( {45^\circ + 78^\circ 41'} \right) = 56^\circ 19'\).

∆ABH vuông tại H nên theo định lí Pythagore ta có:

AB2 = AH2 + BH2

= 42 + 202 = 416

Suy ra AB = \(4\sqrt {26} \) (m)

Áp dụng định lí sin cho ∆ABC, ta được \(\frac{{BC}}{{\sin \widehat {BAC}}} = \frac{{AB}}{{\sin \widehat {ACB}}}\)

Suy ra \(\frac{{BC}}{{\sin 45^\circ }} = \frac{{4\sqrt {26} }}{{\sin 56^\circ 19'}}\)

Do đó \(BC = \frac{{4\sqrt {26} .\sin 45^\circ }}{{\sin 56^\circ 19'}} \approx 17,33\) (m).

Giá trị này gần với 17,5 (m)

Vậy ta chọn phương án A.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trên nóc một tòa nhà có một cột ăng-ten cao 5 m. Từ vị trí quan sát A cao 7 m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50° và 40° so với phương nằm ngang.

Media VietJack

Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

Xem đáp án » 15/10/2022 186

Câu 2:

Từ hai vị trí A và B của một tòa nhà, người ta quan sát được đỉnh C của ngọn núi. Biết rằng độ cao của tòa nhà là AB = 70 m, phương nhìn AC tạo với phương ngang AH một góc bằng 30°, phương nhìn BC tạo với phương ngang BD một góc bằng 15°30’.

Media VietJack

Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

Xem đáp án » 15/10/2022 175

Câu 3:

Cho ∆ABC và các khẳng định sau:

(I) b2 – c2 = a(b.cosC – c.cosB);

(II) (b + c)sinA = a(sinB + sinC);

(III) ha = 2R.sinB.sinC;

(IV) S = R.r.(sinA + sinB + sin C);

Số khẳng định đúng là:

Xem đáp án » 15/10/2022 158

Câu 4:

Cho ∆ABC có a.sinA + b.sinB + c.sinC = ha + hb + hc. Khi đó ∆ABC là:

Xem đáp án » 15/10/2022 143

Câu 5:

Giả sử CD = h là chiều cao của tháp, trong đó C là chân tháp.

Media VietJack

Một người đứng tại vị trí A (\(\widehat {CAD} = 63^\circ ),\) không sang được bờ bên kia để đo chiều cao h của tháp nên chọn thêm một điểm B (ba điểm A, B, C thẳng hàng) cách A một khoảng 24 m và \[\widehat {CBD} = 48^\circ \] để tính toán được chiều cao của tháp. Chiều cao h của tháp gần nhất với:

Xem đáp án » 15/10/2022 114

Câu 6:

Cho biết sinα – cosα = \(\frac{1}{{\sqrt 5 }}\)(0° ≤ α, β ≤ 180°). Giá trị của \(E = \sqrt {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \) bằng:

Xem đáp án » 15/10/2022 103

Câu 7:

Cho biết tanα = –3 (0° ≤ α ≤ 180°). Giá trị của \(H = \frac{{6\sin \alpha - 7\cos \alpha }}{{6\cos \alpha + 7\sin \alpha }}\) bằng:

Xem đáp án » 15/10/2022 93

Câu 8:

Cho biết \(2\cos \alpha + \sqrt 2 \sin \alpha = 2\), với 0° < α < 90°. Giá trị của cotα bằng:

Xem đáp án » 15/10/2022 91

Câu 9:

Cho ∆ABC thỏa mãn \[\sin A = \frac{{\sin B + \sin C}}{{\cos B + \cos C}}\]. Khi đó ∆ABC là:

Xem đáp án » 15/10/2022 86

Câu hỏi mới nhất

Xem thêm »
Xem thêm »