Tại bề mặt đại dương, áp suất nước bằng áp suất khí quyển và là 1 atm (atmosphere). Bên dưới mặt nước, áp suất nước tăng thêm 1 atm cho mỗi 10 mét sâu xuống. Biết rằng mối liên hệ giữa áp suất y (atm) và độ sâu x (m) dưới mặt nước là một hàm số bậc nhất y = ax + b.
a. Xác định các hệ số a và b.
b. Một người thợ lặn đang ở độ sâu bao nhiêu nếu người ấy chịu một áp suất là 2,85atm?
a. Do áp suất tại bề mặt đại dương là 1atm, nên y = 1, x = 0, thay vào hàm số bậc nhất ta được:
Do cứ xuống sâu thêm 10m thì áp xuất nước tăng lên 1atm, nên tại độ sau 10m thì áp suất nước là 2atm (y = 2, x = 10), thay vào hàm số bậc nhất ta được:
Do b = 1 nên thay vào ta được .
Vì vậy, các hệ số , b = 1.
b.Từ câu a, ta có hàm số
Thay y = 2,85 vào hàm số, ta được:
Vậy khi người thợ nặn chịu một áp suất là 2,85atm thì người đó đang ở độ sâu 18,5m.
Tìm các giá trị của a và b để đường thẳng (d): y = ax + b đi qua hai điểm M(1; 5) và N(2; 8).
Xác định hàm số bậc nhất y = ax + b, biết rằng đồ thị hàm số đi qua điểm M(1; -1) và N(2; 1).
Cho Parabol và đường thẳng (d): y = x - 2
a) Vẽ (P) và (d) trên cùng một mặt phẳng tọa độ Oxy.
b) Viết phương trình đường thẳng (d')song song với (d) và tiếp xúc với (P).
Cho đường thẳng d: y = ax + b. Tìm giá trị của a và b sao cho đường thẳng d đi qua điểm A(0; -1) và song song với đường thẳng .
Trong mặt phẳng tọa độ Oxy cho ba đường thẳng
Tìm hàm số có đồ thị là đường thẳng d song song với đường thẳng đồng thời đi qua giao điểm của hai đường thẳng và .
Tìm giá trị của m để đường thẳng (d): y = mx + 3 đi qua điểm A(1;5)
Cho hàm số y = ax + b với a 0. Xác định các hệ số a, b biết đồ thị hàm số song song với đường thẳng y = 2x + 2019 và cắt trục tung tại điểm có tung độ là 2020.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng và parabol
a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt
b) Tìm tất cả giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ thỏa mãn
Cho Parabol và đường thẳng (d): y = x + m - 1 ( là tham số)
1) Vẽ đồ thị (P)
Cho parabol và đường thẳng (x là ẩn, m tham số).
a) Tìm tọa độ giao điểm của parabol (P) với đường thẳng (d) khi m = 4.
b) Tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt thỏa mãn .
Trong mặt phẳng tọa độ Oxy, cho hàm số có đồ thị (P).
a) Vẽ đồ thị (P).
b) Tìm giá trị của m để đường thẳng (d): y = 2x - 3m (với m là tham số) cắt (P) tại hai điểm phân biệt có hoành độ là thỏa mãn
Cho đường thẳng (d): y = x - 1 và parabol (P):
a) Tìm tọa độ A thuộc parabol (P) biết điểm A có hoành độ x = -1
b) Tìm b để đường thẳng (d) và đường thẳng (d’): cắt nhau tại một điểm trên trục hoành.
Cho đường thẳng (d): y = 2x – 2
a) Vẽ đường thẳng (d) trong hệ trục tọa độ Oxy.
b) Tìm m để đường thẳng (d’): y = (m - 1)x + 2m song song với đường thẳng (d)