b) Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác vuông.
b) Giả sử đường tròn đường kính ngoại tiếp tam giác.
Ta có: (vì cùng là bán kính) .
Mà là đường trung tuyến ứng với cạnh nên vuông tại .
Nhận xét
Nếu các tam giác vuông có chung cạnh huyền thì các đỉnh góc vuông của các tam giác vuông đó cùng thuộc một đường tròn có tâm là trung điểm của cạnh huyền chung đó.
Chứng minh các định lý sau:
a) Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm cạnh huyền.
Cho hình thoi . Đường trung trực của cạnh cắt tại và cắt tại . Chứng minh lần lượt là tâm của đường tròn ngoại tiếp các tam giác và .
Cho tam giác vuông tại , điểm thuộc cạnh , điểm thuộc cạnh . Gọi , lần lượt là trung điểm của . Chứng minh rằng bốn điểm cùng thuộc một đường tròn.