Cho tam giác vuông tại , điểm thuộc cạnh , điểm thuộc cạnh . Gọi , lần lượt là trung điểm của . Chứng minh rằng bốn điểm cùng thuộc một đường tròn.
Ta có: (vì là đường trung bình của ).
Ta có: (vì là đường trung bình của ).
Suy ra: là hình bình hành. (1)
Mặt khác (do là đường trung bình của ) và
(góc có cạnh tương ứng song song). (2)
Từ (1) và (2) suy ra là hình chữ nhật. Các tam giác vuông và có chung cạnh huyền nên bốn điểm cùng thuộc một đường tròn đường kính .
b) Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác vuông.
Chứng minh các định lý sau:
a) Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm cạnh huyền.
Cho hình thoi . Đường trung trực của cạnh cắt tại và cắt tại . Chứng minh lần lượt là tâm của đường tròn ngoại tiếp các tam giác và .