Giải bài toán bằng cách lập phương trình hoặc hệ phương trình.
Một người đi xe đạp từ A đến B cách nhau 36 km. Khi đi từ B trở về A, người đó tăng vận tốc thêm 3 km/h. Vì vậy thời gian về ít hơn thời gian đi là 36 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B.
Gọi x (km/h) là vận tốc của người đi xe đạp khi đi từ A đến B (x > 0).
Thời gian của người đi xe đạp khi đi từ A đến B là (giờ)
Vận tốc của người đi xe đạp khi đi từ B đến A là x + 3 (km/h)
Thời gian của người đi xe đạp khi đi từ B đến A là (giờ)
Vì thời gian về ít hơn thời gian đi là 36 phút = giờ nên ta có phương trình:
Û 180(x + 3) – 180x = 3x(x + 3)
Û 180x + 540 – 180x = 3x2 + 9x
Û 3x2 + 9x – 540 = 0
Û x2 + 3x – 180 = 0 (a = 1, b = 3, c = −180)
Ta có: ∆ = b2 – 4ac = 32 – 4.1.(−180) = 729 > 0
Phương trình có 2 nghiệm phân biệt:
x1 = = 12 (nhận)
x2 = = −15 (loại)
Vậy vận tốc của người đi xe đạp khi đi từ A đến B là 12 km/h.
Từ một điểm M ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến MA, MB đến đường tròn (O; R) (Với A, B là hai tiếp điểm). Qua A vẽ đường thẳng song song với MB cắt đường tròn (O; R) tại E. Đoạn ME cắt đường tròn (O; R) tại F. Hai đường thẳng AF và MB cắt nhau tại I.
1) Chứng minh tứ giác MAOB nội tiếp đường tròn và IB2 = IF.IA.
2) Chứng minh IM = IB.
1) Giải phương trình sau: x2 – 2x – 1 = 0
2) Rút gọn biểu thức: A = (với x ≥ 0; x ≠ 4).