Trong hệ tọa độ Oxy cho ba điểm A(3; 5), B(1; 2), C(5; 2) và D(m ; n) . Tính m + n để ACDB là hình bình hành.
Hướng dẫn giải
Đáp án đúng là: C
Ta có: \(\overrightarrow {AC} = \left( {5 - 3;2 - 5} \right) = \left( {2; - 3} \right)\); \(\overrightarrow {BD} = \left( {m - 1;n - 2} \right)\).
Để ACDB là hình bình hành thì \[\overrightarrow {AC} \] = \(\overrightarrow {BD} \) ⇔ \(\left\{ \begin{array}{l}m - 1 = 2\\n - 2 = - 3\end{array} \right.\)⇔\(\left\{ \begin{array}{l}m = 3\\n = - 1\end{array} \right.\).
⇒ m + n = 3 + (– 1) = 2.
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x – 2y – 3 = 0 và \[{d_2}\]: 6x – 2y – 8 = 0
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\],
biết tiếp tuyến vuông góc đường thẳng d: 3x – 4y – 2018 = 0.
Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục bé bằng:
Cho hai vectơ \[\overrightarrow u = \left( {2a - 1; - 3} \right)\] và \[\overrightarrow v = \left( {3;4b + 1} \right)\]. Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:
Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; – 1) là:
Đường tròn (C) đi qua ba điểm A (– 1; – 2), B(0; 1) và C(1; 2) có phương trình là:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.