Cho đường thẳng \[d:\left\{ \begin{array}{l}x = - 3 + 4t\\y = 2 - 4t\end{array} \right.\]. Đường thẳng nào sau đây trùng với đường thẳng d.
Hướng dẫn giải
Đáp án đúng là: A
Đường thẳng \[d:\left\{ \begin{array}{l}x = - 3 + 4t\\y = 2 - 4t\end{array} \right.\]có VTCP là \(\overrightarrow {{u_d}} \) = (4; – 4) = 4.(1; – 1). Suy ra VTCP của đường thẳng d cũng là vectơ có tọa độ (1; – 1).
Với t = 1 thì \[\left\{ \begin{array}{l}x = - 3 + 4.1 = 1\\y = 2 - 4.1 = - 2\end{array} \right.\]. Do đó đường thẳng d đi qua điểm có tọa độ (1; – 2).
Vì vậy đường thẳng d trùng với đường thẳng \[{d_2}:\left\{ \begin{array}{l}x = 1 + t'\\y = - 2 - t'\end{array} \right.\].
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\],
biết tiếp tuyến vuông góc đường thẳng d: 3x – 4y – 2018 = 0.
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x – 2y – 3 = 0 và \[{d_2}\]: 6x – 2y – 8 = 0
Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; – 1) là:
Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục bé bằng:
Cho hai vectơ \[\overrightarrow u = \left( {2a - 1; - 3} \right)\] và \[\overrightarrow v = \left( {3;4b + 1} \right)\]. Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:
Đường tròn (C) đi qua ba điểm A (– 1; – 2), B(0; 1) và C(1; 2) có phương trình là:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.