b) Vì BCEF là tứ giác nội tiếp đường tròn (O) nên (góc ngoài và góc trong tại đỉnh đối diện của tứ giác nội tiếp)
Xét và có :
Cho tam giác ABC có ba góc nhọn. Đường tròn (O) đường kính BC cắt các cạnh AB, AC lần lượt tại các điểm . Gọi H là giao điểm của BF và CE
a) Chứng minh tứ giác AEHF nội tiếp
Một mảnh vườn hình chữ nhật ban đầu có diện tích bằng , nếu tăng chiều dài thêm 6m và giảm chiều rộng đi 3m thì diện tích mảnh vườn không thay đổi. Tính chu vi mảnh vườn ban đầu.
Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình và đường thẳng (d) có phương trình là tham số)
a) Tìm tọa độ các điểm thuộc parabol (P) có tung độ bằng 9
b) Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B. Gọi lần lượt là tung độ của hai điểm A,B. Tìm tất cả các giá trị của m để
d) Từ điểm A kẻ các tiếp tuyến AM, AN của đường tròn (O) ( M,N là các tiếp điểm). Chứng minh ba điểm M, H, N thẳng hàng.