Cho f(x) = x2 + 2(m – 1)x + m2 – 3m + 4. Giá trị của m để f(x) không âm với mọi giá trị của x là:
A. m < 3;
B. m ≥ 3;
C. m ≤ –3;
Hướng dẫn giải
Đáp án đúng là: D
Xét f(x) = x2 + 2(m – 1)x + m2 – 3m + 4.
Ta có:
∆’ = (m – 1)2 – 1.(m2 – 3m + 4)
= m2 – 2m + 1 – m2 + 3m – 4
= m – 3.
Yêu cầu bài toán ⇔ Tìm m để f(x) ≥ 0 với mọi giá trị của x.
Ta có f(x) ≥ 0, với mọi giá trị của x.
⇔ a > 0 và ∆’ ≤ 0.
⇔ 1 > 0 (luôn đúng) và m – 3 ≤ 0.
⇔ m ≤ 3.
Vậy m ≤ 3 thỏa mãn yêu cầu bài toán.
Ta chọn phương án D.
Cho f(x) = ax2 + bx + c (a ≠ 0) có đồ thị đi qua ba điểm (0; 1); (1; –2); (3; 5). Kết luận nào sau đây đúng?
Cho f(x) = mx2 + 2(m + 1)x + m – 2. Với giá trị nào của tham số m thì f(x) là tam thức bậc hai và f(x) > 0 có nghiệm?
Cho f(x) = mx2 – 2mx + m – 1. Giá trị nào của m để f(x) ≥ 0 vô nghiệm?
Cho f(x) = (m – 3)x2 + (m + 3)x – (m + 1). Để f(x) là một tam thức bậc hai và có nghiệm kép thì: