2) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Chứng minh AC là tiếp tuyến của đường tròn (O).
2) Ta có DBOC cân tại O (OB = OC = R)
Mà OH là đường cao ( BC ^ OA tại H)
Þ OH là đường phân giác của DBOC
Þ
Chứng minh DAOC = DAOB (c-g-c)
Þ
Mà (AB là tiếp tuyến của(O) tại B)
Þ
Þ AC ^ OC
Þ Mà C thuộc (O)
Þ AC là tiếp tuyến của đường tròn (O)
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O) sao cho OA=2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm).
1) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R
Cho nhọn, các đường cao AH, BD và CE . Gọi M,N ,P , Q thứ tự là hình chiếu của H trên AB,BD , CE và AC. Chứng minh M,N ,P , Q thẳng hàng.
Cho hình chữ nhật ABCD có O là giao điểm 2 đường chéo. Điểm M trên đoạn OB, lấy E đối xứng với A qua M; H là hình chiếu của điểm E trên BC, vẽ hình chữ nhật EHCF. Chứng minh M, H, F thẳng hàng.
4) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. Chứng minh ba điểm A, E, F thẳng hàng.