Trong mặt phẳng Oxy, cho hình vuông ABCD có A(– 1; 0) và B(1; 2). Tìm tọa độ của điểm C biết rằng hoành độ của điểm C là số dương.
A. C(3; 0);
B. C(– 1; 4);
C. C(3; 0) và C(– 1; 4);
Hướng dẫn giải
Đáp án đúng là: B
Ta có: = (2; 2) = 2(1; 1).
Phương trình đường thẳng BC đi qua điểm B(1; 2) nhận vectơ làm vectơ pháp tuyến (vì AB ⊥ BC) là: x – 1 + y – 2 = 0 ⇔ x + y – 3 = 0.
Vì C thuộc đường thẳng BC nên C(t ; 3 – t) (t > 0).
Khi đó = (t – 1; 1 – t) ⇒ BC = =
= (2; 2) ⇒ AB =
Ta lại có AB = BC ⇔
⇔ |t – 1| = 2
⇔ t – 1 = 2 hoặc t – 1 = – 2
⇔ t = 3 (thỏa mãn) hoặc t = – 1 (loại)
Vậy tọa độ điểm C là (3; 0).
Cho điểm A(−1; 0); B(1; 2); C(3; 3). Tìm điểm D thuộc đường thẳng AB sao cho CD = 5
Cho hình vuông ABCD có A(2;1); C(4; 5). Phương trình đường chéo BD là:
Trong mặt phẳng Oxy cho điểm A(2; 3) và hai đường thẳng d1: x + y + 5 = 0 và d2: x + 2y – 7 = 0. Gọi B(x1; y1) ∈ d1, C(x2; y2) ∈ d2 sao cho tam giác ABC nhận điểm G(2; 0) là trọng tâm. Tính giá trị biểu thức: T = x1x2 + y1y2.
Trong hệ trục toạ độ Oxy cho hai điểm A(−2; 2); B(4; –6) và đường thẳng d : . Tìm điểm M thuộc d sao cho M cách đều hai điểm A, B