Cho hình bình hành ABCD. Biểu diễn theo và ta được
Đáp án đúng là: C
Vẽ hình bình hành ACDE. Khi đó AE // CD và AE = CD.
Mà ABCD là hình bình hành nên AB // CD và AB = CD.
Do đó đường thẳng AE trùng với đường thẳng AB hay E, B, A thẳng hàng.
Lại có: AE = CD = AB nên A là trung điểm của EB.
Suy ra .
Do ACDE là hình bình hành suy ra .
Nên .
Vậy ta chọn phương án C.
Cho tam giác ABC, M là trung điểm của BC, N là điểm thuộc cạnh AC sao cho AN = 2NC. Biểu diễn vectơ theo và ta được
Cho bốn điểm phân biệt A, B, C, D thỏa mãn ABCD là hình thang cân và , I là giao điểm của AD và BC. Khẳng định nào sau đây sai?
Cho tam giác ABC. M là điểm bất kì thỏa mãn . Chọn khẳng định đúng?
Cho tam giác cân ABC tại A. Kẻ AH vuông góc với BC tại H. Chọn khẳng định sai:
Cho hình vuông ABCD có tâm O. Vectơ nào trong các vectơ dưới đây bằng
Cho tam giác đều ABC cạnh a, điểm M là trung điểm của AC. Khẳng định nào sau đây là đúng?