Phương trình tiếp tuyến d của đường tròn (C): (x + 2)2 + (y + 2)2 = 25 tại điểm M(2; 1) là:
A. –y + 1 = 0;
B. 4x + 3y – 11 = 0;
C. 4x + 3y + 14 = 0;
Hướng dẫn giải
Đáp án đúng là: B
Đường tròn (C) có tâm I(−2; −2)
⇒
Vậy phương trình tiếp tuyến d của đường tròn (C) tại điểm M(2; 1) và có vectơ pháp tuyến là: 4(x – 2) + 3(y – 1) = 0 ⇔ 4x + 3y – 11 = 0.
Cho đường tròn (C): x2 + y2 − (m + 2)x – (m + 4)y + m + 1 = 0. Giá trị của m để đường tròn (C) đi qua điểm A(2; −3)
Cho phương trình x2 + y2 – 2mx – 4(m – 2)y + 6 – m = 0 (1) . Tìm điều kiện của m để (1) là phương trình đường tròn.
Đường tròn x2 + y2 – 2x + 10y + 1 = 0 đi qua điểm nào trong các điểm sau đây?
Cho hai điểm A(8; 0) và B(0; 6). Phương trình đường tròn ngoại tiếp tam giác OAB là:
Cho đường tròn (C) có đường kính AB với A(−2; 1), B(4; 1). Khi đó, phương trình đường tròn (C):
Phương trình đường tròn tâm I(– 2; 1) và tiếp xúc đường thẳng ∆: x – 2y + 7 = 0 là:
Giá trị m để đường thẳng ∆: (m – 1)y + mx – 2 = 0 là tiếp tuyến của đường tròn (C): x2 + y2 – 6x + 5 = 0