Cho parabol (P): y2 = 4x và 2 điểm A(0; -4) , B(-6; 4).Tìm điểm C thuộc (P) sao cho tam giác ABC vuông tại A
A. C(16; 8) hoặc C;
B. C(16; 8);
C. C;
Hướng dẫn giải
Đáp án đúng là: A
Vì điểm C thuộc (P) nên C
Ta có: ;
Theo giả thiết tam giác ABC vuông tại A khi và chỉ khi = 0
⇔
⇔
⇔
Với c = 8 thì C(16; 8)
Với c = thì C
Vậy điểm C cần tìm có toạ độ là: C(16; 8) hoặc C.
Viết phương trình đường thẳng hypebol (H), biết (H) đi qua điểm M(3; −4) và có 1 tiêu điểm là F2(5; 0)
Cho phương trình chính tắc của parabol (P), biết rằng (P) có đường chuẩn là đường thẳng ∆: x + 4 = 0. Tìm toạ độ điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của (P) bằng
Cho elip (E) : . Qua tiêu điểm F1 của (E) dựng đường thẳng song song với Oy và cắt (E) tại hai điểm M và N. Tính độ dài MN
Cho elip (E) : 9x2 + 16y2 = 144 . Với M là điểm thuộc elip biết = 60°. Tính MF1.MF2