Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

13/07/2024 138

Cho hai đường thẳng d1 và d2 song song với nhau. Trên d1 có 8 điểm phân biệt, trên d2 có 6 điểm phân biệt. Số tam giác có ba đỉnh lấy từ 14 điểm đã cho là:

A. 68;

B. 120;

C. 168;

D. 288.

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Vì hai đường thẳng này song song nên để tạo thành 1 tam giác ta phải lấy 1 điểm trên đường thẳng này và hai điểm trên đường thẳng kia.

Trường hợp 1: Lấy 1 điểm trên đường thẳng d1 và 2 điểm trên đường thẳng d2.

Số tam giác có được là: \(C_8^1.C_6^2 = 120\) tam giác.

Trường hợp 2: Lấy 2 điểm trên đường thẳng d1 và 1 điểm trên đường thẳng d2.

Số tam giác có được là: \(C_8^2.C_6^1 = 168\) tam giác.

Số tam giác có ba đỉnh lấy từ 14 điểm đã cho là 120 + 168 = 288 tam giác.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm n biết \(A_n^3 + C_n^{n - 2} = 14n\) với n > 2, n ℕ.

Xem đáp án » 05/01/2023 160

Câu 2:

Có 7 nhà Toán học nam, 4 nhà Toán học nữ và 5 nhà Vật lí nam. Có bao nhiêu cách lập đoàn công tác gồm 3 người có cả nam và nữ đồng thời có cả Toán học và Vật lí.

Xem đáp án » 05/01/2023 113

Câu 3:

Tìm n biết  \(C_n^{n - 2} + 2n = 9\) với n ≥ 2, n ℕ.

Xem đáp án » 05/01/2023 112

Câu 4:

Cho số tự nhiên n thỏa mãn \(C_n^2 + A_n^2 = 9n.\) Mệnh đề nào sau đây đúng?

Xem đáp án » 05/01/2023 86

Câu hỏi mới nhất

Xem thêm »
Xem thêm »