Phương trình chính tắc của parabol (P) có đường chuẩn ∆: 2x + 6 = 0 là:
Hướng dẫn giải
Đáp án đúng là: C
Ta có 2x + 6 = 0 ⇔ x + 3 = 0.
Ta có \(\frac{p}{2} = 3\).
Suy ra p = 2.3 = 6.
Vậy phương trình chính tắc của (P): y2 = 2px hay y2 = 12x.
Do đó ta chọn phương án C.
Phương trình chính tắc của hypebol (H) có một tiêu điểm F(–3; 0) và đi qua điểm M(2; 0) là:
Cặp điểm nào sau đây là các tiêu điểm của elip (E): \(\frac{{{x^2}}}{5} + \frac{{{y^2}}}{4} = 1\)?
Cho hai phương trình \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1\) (1) và \(\frac{{{x^2}}}{5} + \frac{{{y^2}}}{9} = 1\) (2). Phương trình nào là phương trình chính tắc của elip có 2a = 6, 2c = 4?
Điểm nào sau đây là các tiêu điểm của hypebol (H): \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{25}} = 1\)?